Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings could lead to a blood test for lung cancer

13.05.2011
Researchers have identified characteristic patterns of molecules called microRNA (miRNA) in the blood of people with lung cancer that might reveal both the presence and aggressiveness of the disease, and perhaps who is at risk of developing it. These patterns may be detectable up to two years before the tumor is found by computed tomography (CT) scans.

The findings could lead to a blood test for lung cancer, according to a researcher with the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute who helped lead study.

"We found patterns of abnormal microRNAs in the plasma of people with lung cancer and showed that it might be possible to use these patterns to detect lung cancer in a blood sample," says principal investigator Dr. Carlo M. Croce, professor of molecular virology, immunology and medical genetics, and director of the Human Cancer Genetics program.

"These abnormal microRNAs were present in blood serum well before the tumors were detected by a sensitive method such as spiral CT scan, suggesting they might have strong predictive, diagnostic and prognostic potential."

The findings were published in a recent issue of the Proceedings of the National Academy of Sciences.

Croce and his collaborators initially identified the molecular patterns in tissue samples collected from patients participating in a clinical trial examining the use of spiral CT scans to screen for lung cancer. The trial involved 1,035 individuals aged 50 years or older who had smoked at least a pack of cigarettes a day for 20 years or more. All patients underwent a CT scan every year for five years and provided blood, sputum and urine samples.

The researchers initially analyzed 28 tumor samples and 24 samples of normal-lung tissue for their miRNA profiles. They identified miRNAs that could discriminate between lung tumor and normal lung tissue. They also found patterns of miRNAs that distinguished tumors with faster growth rates and that correlated with poor disease-free survival.

Then Croce and his colleagues analyzed blood samples that had been collected more than a year before the individual's lung cancer was detected by spiral CT. They discovered a signature of 15 miRNAs that could identify 18 of 20 individuals whose cancer was later detected by spiral CT.

To verify that finding, they applied the signature to a second set of blood samples collected during a similar but unrelated lung-cancer trial. Here, the signature correctly identified 12 of 15 patients whose lung tumors were detected more than a year later by spiral CT. The researchers estimated that the signature were detectable in blood up to 28 months prior to spiral CT detection.

The researchers also found miRNA signatures in the blood that were associated with the following:

Lung-cancer diagnosis – a signature identified 16 of 19 patients with lung cancer in set one, and 12 of 16 patients in set two.

Poor prognosis – a signature identified five of five patients with poor prognosis in set one; four of five in set two.

Good prognosis – a signature identified five of 15 patients in set one, and five of 11 patients in set two.

"Our goal was to identify biomarkers that could predict tumor development and prognosis to improve lung-cancer diagnosis and treatment," Croce says. "Overall, these findings strengthen the observation that circulating miRNA in plasma is detectable well before clinical disease detection by spiral CT, indicating the possibility of identifying high-risk patients on the basis of miRNA profiling."

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: CT scan Cancer blood sample cancer diagnosis lung cancer lung tissue

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>