Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings could lead to a blood test for lung cancer

13.05.2011
Researchers have identified characteristic patterns of molecules called microRNA (miRNA) in the blood of people with lung cancer that might reveal both the presence and aggressiveness of the disease, and perhaps who is at risk of developing it. These patterns may be detectable up to two years before the tumor is found by computed tomography (CT) scans.

The findings could lead to a blood test for lung cancer, according to a researcher with the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute who helped lead study.

"We found patterns of abnormal microRNAs in the plasma of people with lung cancer and showed that it might be possible to use these patterns to detect lung cancer in a blood sample," says principal investigator Dr. Carlo M. Croce, professor of molecular virology, immunology and medical genetics, and director of the Human Cancer Genetics program.

"These abnormal microRNAs were present in blood serum well before the tumors were detected by a sensitive method such as spiral CT scan, suggesting they might have strong predictive, diagnostic and prognostic potential."

The findings were published in a recent issue of the Proceedings of the National Academy of Sciences.

Croce and his collaborators initially identified the molecular patterns in tissue samples collected from patients participating in a clinical trial examining the use of spiral CT scans to screen for lung cancer. The trial involved 1,035 individuals aged 50 years or older who had smoked at least a pack of cigarettes a day for 20 years or more. All patients underwent a CT scan every year for five years and provided blood, sputum and urine samples.

The researchers initially analyzed 28 tumor samples and 24 samples of normal-lung tissue for their miRNA profiles. They identified miRNAs that could discriminate between lung tumor and normal lung tissue. They also found patterns of miRNAs that distinguished tumors with faster growth rates and that correlated with poor disease-free survival.

Then Croce and his colleagues analyzed blood samples that had been collected more than a year before the individual's lung cancer was detected by spiral CT. They discovered a signature of 15 miRNAs that could identify 18 of 20 individuals whose cancer was later detected by spiral CT.

To verify that finding, they applied the signature to a second set of blood samples collected during a similar but unrelated lung-cancer trial. Here, the signature correctly identified 12 of 15 patients whose lung tumors were detected more than a year later by spiral CT. The researchers estimated that the signature were detectable in blood up to 28 months prior to spiral CT detection.

The researchers also found miRNA signatures in the blood that were associated with the following:

Lung-cancer diagnosis – a signature identified 16 of 19 patients with lung cancer in set one, and 12 of 16 patients in set two.

Poor prognosis – a signature identified five of five patients with poor prognosis in set one; four of five in set two.

Good prognosis – a signature identified five of 15 patients in set one, and five of 11 patients in set two.

"Our goal was to identify biomarkers that could predict tumor development and prognosis to improve lung-cancer diagnosis and treatment," Croce says. "Overall, these findings strengthen the observation that circulating miRNA in plasma is detectable well before clinical disease detection by spiral CT, indicating the possibility of identifying high-risk patients on the basis of miRNA profiling."

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: CT scan Cancer blood sample cancer diagnosis lung cancer lung tissue

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>