Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings could lead to a blood test for lung cancer

13.05.2011
Researchers have identified characteristic patterns of molecules called microRNA (miRNA) in the blood of people with lung cancer that might reveal both the presence and aggressiveness of the disease, and perhaps who is at risk of developing it. These patterns may be detectable up to two years before the tumor is found by computed tomography (CT) scans.

The findings could lead to a blood test for lung cancer, according to a researcher with the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute who helped lead study.

"We found patterns of abnormal microRNAs in the plasma of people with lung cancer and showed that it might be possible to use these patterns to detect lung cancer in a blood sample," says principal investigator Dr. Carlo M. Croce, professor of molecular virology, immunology and medical genetics, and director of the Human Cancer Genetics program.

"These abnormal microRNAs were present in blood serum well before the tumors were detected by a sensitive method such as spiral CT scan, suggesting they might have strong predictive, diagnostic and prognostic potential."

The findings were published in a recent issue of the Proceedings of the National Academy of Sciences.

Croce and his collaborators initially identified the molecular patterns in tissue samples collected from patients participating in a clinical trial examining the use of spiral CT scans to screen for lung cancer. The trial involved 1,035 individuals aged 50 years or older who had smoked at least a pack of cigarettes a day for 20 years or more. All patients underwent a CT scan every year for five years and provided blood, sputum and urine samples.

The researchers initially analyzed 28 tumor samples and 24 samples of normal-lung tissue for their miRNA profiles. They identified miRNAs that could discriminate between lung tumor and normal lung tissue. They also found patterns of miRNAs that distinguished tumors with faster growth rates and that correlated with poor disease-free survival.

Then Croce and his colleagues analyzed blood samples that had been collected more than a year before the individual's lung cancer was detected by spiral CT. They discovered a signature of 15 miRNAs that could identify 18 of 20 individuals whose cancer was later detected by spiral CT.

To verify that finding, they applied the signature to a second set of blood samples collected during a similar but unrelated lung-cancer trial. Here, the signature correctly identified 12 of 15 patients whose lung tumors were detected more than a year later by spiral CT. The researchers estimated that the signature were detectable in blood up to 28 months prior to spiral CT detection.

The researchers also found miRNA signatures in the blood that were associated with the following:

Lung-cancer diagnosis – a signature identified 16 of 19 patients with lung cancer in set one, and 12 of 16 patients in set two.

Poor prognosis – a signature identified five of five patients with poor prognosis in set one; four of five in set two.

Good prognosis – a signature identified five of 15 patients in set one, and five of 11 patients in set two.

"Our goal was to identify biomarkers that could predict tumor development and prognosis to improve lung-cancer diagnosis and treatment," Croce says. "Overall, these findings strengthen the observation that circulating miRNA in plasma is detectable well before clinical disease detection by spiral CT, indicating the possibility of identifying high-risk patients on the basis of miRNA profiling."

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: CT scan Cancer blood sample cancer diagnosis lung cancer lung tissue

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>