Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings connect diet and intestinal bacteria with healthier immune systems

30.10.2009
Insoluble dietary fibre, or roughage, not only keeps you regular, say Australian scientists, it also plays a vital role in the immune system, keeping certain diseases at bay.

The indigestible part of all plant-based foods pushes its way through most of the digestive tract unchanged, acting as a kind of internal broom. When it arrives in the colon, bacteria convert it to energy and compounds known as ‘short chain fatty acids’. These are already known to alleviate the symptoms of colitis, an inflammatory gut condition. 1

Similarly, probiotics and prebiotics, food supplements that affect the balance of gut bacteria, reduce the symptoms of asthma and rheumatoid arthritis, also inflammatory diseases. Until now no-one has understood why.

Published tomorrow in Nature, breakthrough research by a Sydney-based team makes new sense of such known facts by describing a mechanism that links diet, gut bacteria and the immune system.

PhD student Kendle Maslowski and Professor Charles Mackay from the Garvan Institute of Medical Research, in collaboration with the Co-operative Research Centre for Asthma and Airways, have demonstrated that GPR43, a molecule expressed by immune cells and previously shown to bind short chain fatty acids, functions as an anti-inflammatory receptor,

“The notion that diet might have profound effects on immune responses or inflammatory diseases has never been taken that seriously” said Professor Mackay. “We believe that changes in diet, associated with western lifestyles, contribute to the increasing incidences of asthma, Type 1 diabetes and other autoimmune diseases. Now we have a new molecular mechanism that might explain how diet is affecting our immune systems.”

“We’re also now beginning to understand that from the moment you’re born, it’s incredibly important to be colonised by the right kinds of gut bacteria,” added Kendle. “The kinds of foods you eat directly determine the levels of certain bacteria in your gut.”

“Changing diets are changing the kinds of gut bacteria we have, as well as their by-products, particularly short chain fatty acids. If we have low amounts of dietary fibre, then we’re going to have low levels of short chain fatty acids, which we have demonstrated are very important in the immune systems of mice.”

Mice that lack the GPR43 gene have increased inflammation, and poor ability to resolve inflammation, because their immune cells can’t bind to short chain fatty acids.

There is plenty of evidence to suggest that bacteria and their by-products play an important role in people. An American study published in Nature in 2006 2 compared the bacteria in the guts of obese and lean people. The obese people were put on a diet, and as they lost weight their bacteria profile gradually came to match that of the lean people.

Another study 3 looked at what diets might do to short chain fatty acid levels. Obese people were put on three different diets over time – high, medium and low fibre – and there was a direct correlation between the level of carbohydrate, or fibre, in the diet and the level of short chain fatty acids.

The conclusions drawn from the current research provide some of the most compelling reasons yet for eating considerably more unprocessed whole foods - fruits, vegetables, grains, nuts and seeds. 4

Dietary fibre, of course, has many known health benefits in addition to those discussed above, including reduced risk of cardiovascular disease and certain cancers 5, and various health organizations around the world recommend daily minimum levels. 6 It is certain that the majority of people in countries like Australia, the United States and Britain eat much less fibre than they need to stay healthy.

“The role of nutrition and gut intestinal bacteria in immune responses is an exciting new topic in immunology, and recent findings including our own open up new possibilities to explore causes as well as new treatments for inflammatory diseases such as asthma”, said Professor Mackay.

ABOUT The Cooperative Research Centre for Asthma and Airways (CRCAA)

The Cooperative Research Centre for Asthma and Airways (CRCAA) is one of the 48 cooperative research centres established under the Australian Government’s Cooperative Research Centre Program. The CRCAA is a joint venture between two medical research institutes, four universities and two pharmaceutical companies. The CRCAA undertakes research with the aim of developing improved therapies and diagnostic tools for the treatment of asthma and other airways diseases. The research partners in the CRCAA are Monash University, the Garvan Institute of Medical Research, the University of Sydney, the University of Newcastle, the University of Western Australia, and the Woolcock Institute of Medical Research.

ABOUT GARVAN

The Garvan Institute of Medical Research was founded in 1963. Initially a research department of St Vincent's Hospital in Sydney, it is now one of Australia's largest medical research institutions with nearly 500 scientists, students and support staff. Garvan’s main research programs are: Cancer, Diabetes & Obesity, Immunology and Inflammation, Osteoporosis and Bone Biology, and Neuroscience. The Garvan’s mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health. The outcome of Garvan’s discoveries is the development of better methods of diagnosis, treatment, and ultimately, prevention of disease.

Alison Heather | EurekAlert!
Further information:
http://www.garvan.org.au
http://www.garvan.org.au/news-events/news/new-findings-connect-diet-and-intestinal-bacteria-with-healthier-immune-systems.html

More articles from Health and Medicine:

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

nachricht Improving memory with magnets
28.03.2017 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>