Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings connect diet and intestinal bacteria with healthier immune systems

30.10.2009
Insoluble dietary fibre, or roughage, not only keeps you regular, say Australian scientists, it also plays a vital role in the immune system, keeping certain diseases at bay.

The indigestible part of all plant-based foods pushes its way through most of the digestive tract unchanged, acting as a kind of internal broom. When it arrives in the colon, bacteria convert it to energy and compounds known as ‘short chain fatty acids’. These are already known to alleviate the symptoms of colitis, an inflammatory gut condition. 1

Similarly, probiotics and prebiotics, food supplements that affect the balance of gut bacteria, reduce the symptoms of asthma and rheumatoid arthritis, also inflammatory diseases. Until now no-one has understood why.

Published tomorrow in Nature, breakthrough research by a Sydney-based team makes new sense of such known facts by describing a mechanism that links diet, gut bacteria and the immune system.

PhD student Kendle Maslowski and Professor Charles Mackay from the Garvan Institute of Medical Research, in collaboration with the Co-operative Research Centre for Asthma and Airways, have demonstrated that GPR43, a molecule expressed by immune cells and previously shown to bind short chain fatty acids, functions as an anti-inflammatory receptor,

“The notion that diet might have profound effects on immune responses or inflammatory diseases has never been taken that seriously” said Professor Mackay. “We believe that changes in diet, associated with western lifestyles, contribute to the increasing incidences of asthma, Type 1 diabetes and other autoimmune diseases. Now we have a new molecular mechanism that might explain how diet is affecting our immune systems.”

“We’re also now beginning to understand that from the moment you’re born, it’s incredibly important to be colonised by the right kinds of gut bacteria,” added Kendle. “The kinds of foods you eat directly determine the levels of certain bacteria in your gut.”

“Changing diets are changing the kinds of gut bacteria we have, as well as their by-products, particularly short chain fatty acids. If we have low amounts of dietary fibre, then we’re going to have low levels of short chain fatty acids, which we have demonstrated are very important in the immune systems of mice.”

Mice that lack the GPR43 gene have increased inflammation, and poor ability to resolve inflammation, because their immune cells can’t bind to short chain fatty acids.

There is plenty of evidence to suggest that bacteria and their by-products play an important role in people. An American study published in Nature in 2006 2 compared the bacteria in the guts of obese and lean people. The obese people were put on a diet, and as they lost weight their bacteria profile gradually came to match that of the lean people.

Another study 3 looked at what diets might do to short chain fatty acid levels. Obese people were put on three different diets over time – high, medium and low fibre – and there was a direct correlation between the level of carbohydrate, or fibre, in the diet and the level of short chain fatty acids.

The conclusions drawn from the current research provide some of the most compelling reasons yet for eating considerably more unprocessed whole foods - fruits, vegetables, grains, nuts and seeds. 4

Dietary fibre, of course, has many known health benefits in addition to those discussed above, including reduced risk of cardiovascular disease and certain cancers 5, and various health organizations around the world recommend daily minimum levels. 6 It is certain that the majority of people in countries like Australia, the United States and Britain eat much less fibre than they need to stay healthy.

“The role of nutrition and gut intestinal bacteria in immune responses is an exciting new topic in immunology, and recent findings including our own open up new possibilities to explore causes as well as new treatments for inflammatory diseases such as asthma”, said Professor Mackay.

ABOUT The Cooperative Research Centre for Asthma and Airways (CRCAA)

The Cooperative Research Centre for Asthma and Airways (CRCAA) is one of the 48 cooperative research centres established under the Australian Government’s Cooperative Research Centre Program. The CRCAA is a joint venture between two medical research institutes, four universities and two pharmaceutical companies. The CRCAA undertakes research with the aim of developing improved therapies and diagnostic tools for the treatment of asthma and other airways diseases. The research partners in the CRCAA are Monash University, the Garvan Institute of Medical Research, the University of Sydney, the University of Newcastle, the University of Western Australia, and the Woolcock Institute of Medical Research.

ABOUT GARVAN

The Garvan Institute of Medical Research was founded in 1963. Initially a research department of St Vincent's Hospital in Sydney, it is now one of Australia's largest medical research institutions with nearly 500 scientists, students and support staff. Garvan’s main research programs are: Cancer, Diabetes & Obesity, Immunology and Inflammation, Osteoporosis and Bone Biology, and Neuroscience. The Garvan’s mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health. The outcome of Garvan’s discoveries is the development of better methods of diagnosis, treatment, and ultimately, prevention of disease.

Alison Heather | EurekAlert!
Further information:
http://www.garvan.org.au
http://www.garvan.org.au/news-events/news/new-findings-connect-diet-and-intestinal-bacteria-with-healthier-immune-systems.html

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>