Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings About Brain Proteins Suggest Possible Way to Fight Alzheimer’s

08.10.2009
The action of a small protein that is a major villain in Alzheimer’s disease can be counterbalanced with another brain protein, researchers at UT Southwestern Medical Center have found in an animal study.

The findings, available online in the journal Proceedings of the National Academy of Sciences, suggest a promising new tactic against the devastating illness, the researchers said.

The harmful protein, called beta-amyloid, is found in the brain and, when functioning properly, suppresses nerve activity involved with memory and learning. Its normal function can be likened to a red traffic light, restraining nerve cells from getting overexcited when they receive stimulating signals from neighboring cells. People with Alzheimer’s disease, however, accumulate too much beta-amyloid – the traffic light gets stuck on “red” and nerve cells become less responsive.

Another brain protein, called Reelin, acts as a “green light,” stimulating nerve cells to respond more strongly to their neighbors’ signals.

The new study shows that applying Reelin directly to brain slices from mice prevents excess beta-amyloid from completely silencing nerves.

“If we can identify a mechanism to keep the nerve cells functioning strongly, that might provide a way to fight Alzheimer’s disease,” said Dr. Joachim Herz, professor of molecular genetics and neuroscience at UT Southwestern and the study’s senior author.

In the study, the researchers recorded electrical currents in the mouse hippocampus, an area of the brain associated with learning and memory. From their experiments they determined that Reelin and beta-amyloid interact with the same protein complex, called an NMDA receptor, which plays an important role in coordinating chemical signals between adjacent nerve cells.

They found that Reelin activates and strengthens the response of the NMDA receptor. In the presence of too much beta-amyloid, the receptor migrates into the cell, reducing the cell’s sensitivity to incoming signals. By contrast, in strong concentrations of Reelin, the receptor remains active and the cell has the green light to continue receiving normally.

Dr. Herz said the study is especially important because this mechanism involves another protein involved in Alzheimer’s called ApoE4, which is the primary risk factor for the most frequent late-onset form of the disease. The receptor that binds to ApeE molecules also binds to Reelin, and is part of the red-light/green-light complex that controls the sensitivity of the NMDA receptors.

”These results imply that Reelin, ApoE and beta-amyloid converge on the same molecular mechanism, which is critical in the Alzheimer’s disease process, and Reelin may be a common factor to fight both beta-amyloid and mutated ApoE,” Dr. Herz said. “This study establishes a rationale that ApoE receptors have an action that can keep the Alzheimer’s disease process at bay by preventing damage in the first place.”

The researchers are currently studying the role of ApoE4 in this mechanism. Mimicking or preserving normal Reelin function to stimulate the ApoE receptors might provide a path to stave off the disease, Dr. Herz said.

Other UT Southwestern authors included lead author Dr. Murat Durakoglugil, assistant instructor of molecular genetics; graduate student Ying Chen; Dr. Charles White, professor of pathology; and Dr. Ege Kavalali, associate professor of neuroscience.

The study was funded by the National Institutes of Health, the American Health Assistance Foundation, the Perot Family Foundation and the Humboldt Foundation.

Visit www.utsouthwestern.org/neurosciences to learn more about clinical services in the neurosciences at UT Southwestern, including Alzheimer’s disease treatment.

Dr. Joachim Herz -- http://www.utsouthwestern.edu/findfac/professional/0,2356,13165,00.html

Dr. Joachim Herz | Newswise Science News
Further information:
http://www.utsouthwestern.org/neurosciences

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>