Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings About Brain Proteins Suggest Possible Way to Fight Alzheimer’s

08.10.2009
The action of a small protein that is a major villain in Alzheimer’s disease can be counterbalanced with another brain protein, researchers at UT Southwestern Medical Center have found in an animal study.

The findings, available online in the journal Proceedings of the National Academy of Sciences, suggest a promising new tactic against the devastating illness, the researchers said.

The harmful protein, called beta-amyloid, is found in the brain and, when functioning properly, suppresses nerve activity involved with memory and learning. Its normal function can be likened to a red traffic light, restraining nerve cells from getting overexcited when they receive stimulating signals from neighboring cells. People with Alzheimer’s disease, however, accumulate too much beta-amyloid – the traffic light gets stuck on “red” and nerve cells become less responsive.

Another brain protein, called Reelin, acts as a “green light,” stimulating nerve cells to respond more strongly to their neighbors’ signals.

The new study shows that applying Reelin directly to brain slices from mice prevents excess beta-amyloid from completely silencing nerves.

“If we can identify a mechanism to keep the nerve cells functioning strongly, that might provide a way to fight Alzheimer’s disease,” said Dr. Joachim Herz, professor of molecular genetics and neuroscience at UT Southwestern and the study’s senior author.

In the study, the researchers recorded electrical currents in the mouse hippocampus, an area of the brain associated with learning and memory. From their experiments they determined that Reelin and beta-amyloid interact with the same protein complex, called an NMDA receptor, which plays an important role in coordinating chemical signals between adjacent nerve cells.

They found that Reelin activates and strengthens the response of the NMDA receptor. In the presence of too much beta-amyloid, the receptor migrates into the cell, reducing the cell’s sensitivity to incoming signals. By contrast, in strong concentrations of Reelin, the receptor remains active and the cell has the green light to continue receiving normally.

Dr. Herz said the study is especially important because this mechanism involves another protein involved in Alzheimer’s called ApoE4, which is the primary risk factor for the most frequent late-onset form of the disease. The receptor that binds to ApeE molecules also binds to Reelin, and is part of the red-light/green-light complex that controls the sensitivity of the NMDA receptors.

”These results imply that Reelin, ApoE and beta-amyloid converge on the same molecular mechanism, which is critical in the Alzheimer’s disease process, and Reelin may be a common factor to fight both beta-amyloid and mutated ApoE,” Dr. Herz said. “This study establishes a rationale that ApoE receptors have an action that can keep the Alzheimer’s disease process at bay by preventing damage in the first place.”

The researchers are currently studying the role of ApoE4 in this mechanism. Mimicking or preserving normal Reelin function to stimulate the ApoE receptors might provide a path to stave off the disease, Dr. Herz said.

Other UT Southwestern authors included lead author Dr. Murat Durakoglugil, assistant instructor of molecular genetics; graduate student Ying Chen; Dr. Charles White, professor of pathology; and Dr. Ege Kavalali, associate professor of neuroscience.

The study was funded by the National Institutes of Health, the American Health Assistance Foundation, the Perot Family Foundation and the Humboldt Foundation.

Visit www.utsouthwestern.org/neurosciences to learn more about clinical services in the neurosciences at UT Southwestern, including Alzheimer’s disease treatment.

Dr. Joachim Herz -- http://www.utsouthwestern.edu/findfac/professional/0,2356,13165,00.html

Dr. Joachim Herz | Newswise Science News
Further information:
http://www.utsouthwestern.org/neurosciences

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>