Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding ways to detect and treat Alzheimer's disease

18.02.2014
Canadian researchers are unraveling the mysteries of the amyloid beta peptides, implicated in Alzheimer's disease, which they describe at Biophysical Society Meeting

Alzheimer's disease has long been marked by progress -- but not the kind of progress the medical community seeks. It is the most common form of dementia among older Americans, and its risk increases with increasing age; for those living with the disease, its ravages get worse over time; and as we move into the 21st century, it will place a greater and greater burden on society. The number of Americans living with Alzheimer's has doubled since 1980 and is expected to triple again by 2050.


This image shows a simple scheme illustrating the formation of toxic aggregates through self-association of the Abeta molecule. Each chain represents a single Abeta molecule. Red sites are those that are pivotal for self-association.

Credit: G.Melacini/McMaster University

Sadly, Alzheimer's disease has been the least prone to progress in the one area where we'd like to find change the most -- in our ability to fight it. There is still no way to prevent, reverse or definitively diagnose Alzheimer's disease using molecular markers or imaging.

Many research groups are working to change that, and at the 58th Annual Biophysical Society Meeting, which is taking place in San Francisco from Feb. 15-19, Giuseppe Melacini of McMaster University in Ontario, Canada will describe the progress his team is making at unraveling the mystery of the amyloid beta ("Abeta") peptide, a tangling molecule found in the brain plaques associated with the disease.

"By focusing on one of the main components that impairs proper brain function, called Abeta peptide, we are trying to understand what properties of Abeta lead to toxic aggregates implicated in brain impairment," explained Giuseppe Melacini. This work is significant, he added, because without a molecular understanding of Alzheimer's disease, it will be difficult if not impossible to begin to find a cure.

Melacini and his team used a unique method originally developed to study long-range communication in folded proteins. This is a new approach never used before for unfolded peptides, such as the Abeta molecule, and it could reveal transient elusive states of Abeta that have escaped detection so far but that could be implicated in toxic aggregate formation. The research team dealt with challenges unique to the Abeta molecule. This system is difficult to work with because it is very aggregation prone and very sensitive to even the smallest differences in sample preparation protocols, says Melacini. "The Abeta molecule is also highly dynamic and it is therefore hard to pinpoint which structures out of this complex ensemble are functionally relevant."

While this research is still in its early stages, the team is taking the next steps to identify Abeta structures that either form or inhibit the formation of toxic aggregates, which in turn can cause brain impairment. Once that is done, the goal will be to trap these structures and use them for screening.

"If we can identify the structures of the Abeta peptide that lead to toxic aggregates, we can then begin the development of inhibitors to suppress that process and have a chance to find treatments for Alzheimer's disease," Melacini said.

The presentation "Finding Order in Disorder: Probing Transient Functional States in the Amyloidogenic Alzheimer's Aâ Peptide Using the NMR Chemical Shift Covariance Analysis (CHESCA)" by Moustafa Algamal, Julijana Milojevic, Naeimeh Jafari, Shiyuan Zhang, Rajeevan Selvaratnam and Giuseppe Melacini will be at 11:45 a.m. on Monday, February 17, 2014 in Room 304 in San Francisco's Moscone Convention Center.

ABSTRACT: http://tinyurl.com/nljg2o3

ABOUT THE MEETING

Each year, the Biophysical Society Annual Meeting brings together more than 7,000 researchers working in the multidisciplinary fields representing biophysics. With more than 4,200 poster presentations, over 200 exhibits, and more than 20 symposia, the BPS Annual Meeting is the largest meeting of biophysicists in the world. Despite its size, the meeting retains its small-meeting flavor through its subgroup symposia, platform sessions, social activities, and committee programs.

The 58th Annual Meeting will be held at the Moscone Convention Center, 747 Howard Street, San Francisco, California.

PRESS REGISTRATION

The Biophysical Society invites professional journalists, freelance science writers and public information officers to attend its Annual Meeting free of charge. For press registration, contact Alisha Yocum at ayocum@biophysics.org or Jason Bardi at 240-535-4954.

QUICK LINKS

Main Meeting Page: http://tinyurl.com/mfjh37p

Program Highlights: http://tinyurl.com/mosxrof

Abstracts Search: http://tinyurl.com/lbrearu

ABOUT THE SOCIETY

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, monthly journal, and committee and outreach activities. Its 9000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry. For more information on the Society, or the 2014 Annual Meeting, visit http://www.biophysics.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>