Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding out how neurons fire

28.11.2011
Research on the mechanism that controls neuron firing in the rat brain reveals a surprise for neuroscientists

Contrary to expectations that the neurotransmitter GABA only inhibited neuronal firing in the adult brain, RIKEN-led research has shown that it can also excite interneurons in the hippocampus of the rat brain by changing the conductance of ions across the membranes of these cells1.

According to conventional wisdom, activation of the GABAA receptor subtype at the communication junction between neurons—the synapse—strongly increases membrane conductance of ions, triggering a process called shunting, which inhibits neuronal firing. Led by Alexey Semyanov of the RIKEN Brain Science Institute in Wako, the team demonstrated that activation of these receptors outside of synaptic junctions, so-called ‘extrasynaptic receptors’ can also excite the neurons.

Further activation of these extrasynaptic receptors by application of higher concentrations of GABA turn excitation into inhibition. “To our knowledge, this is the first demonstration that changes in membrane conductance can switch the action of a neurotransmitter from excitation to inhibition,” Semyanov says.

Semyanov and colleagues treated slices of the mouse hippocampus with low or high concentrations of GABA and compared the effects. They showed that the more GABA they added, the more they could detect an increase in the conductance of the membranes of hippocampus cells called CA1 interneurons. The increased conductance was mediated through extrasynaptic GABAA receptors.

The CA1 interneurons could spontaneously fire action potentials—electrical impulses that transfer signals in the network of interconnected neurons. Adding low concentrations of GABA increased the rate of action potential firing, while high concentrations of GABA reduced action potential firing in the cells. Because the concentration of GABA that slowed neuronal firing had also enhanced membrane conductance, the researchers argue that increasing this conductance by activating extrasynaptic GABAA receptors can result in inhibition via shunting along the membrane, which would cause a decrease in action potential generation in the neurons.

The hippocampus plays a key role in learning and memory, and GABA concentrations are known to increase in this part of the brain during exploratory behavior in rats. The findings therefore raise the intriguing possibility that changes in GABA concentration in the brain during some behavioral tasks could bidirectionally change neuronal excitability; this could be a characteristic of the hippocampal neuronal network that may be required for some behavioral tasks in animals.

“Many clinically used drugs, such as sedatives or anti-epileptics, target GABA receptors,” notes Semyanov. “Our findings could potentially explain their therapeutic action as well as some of their unwanted side effects.”

The corresponding author for this highlight is based at the Semyanov Research Unit, RIKEN Brain Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>