Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fighting obesity with thermal imaging

Scientists at The University of Nottingham believe they’ve found a way of fighting obesity — with a pioneering technique which uses thermal imaging. This heat-seeking technology is being used to trace our reserves of brown fat — the body’s ‘good fat’ — which plays a key role in how quickly our body can burn calories as energy.

This special tissue known as Brown Adipose Tissue, or brown fat, produces 300 times more heat than any other tissue in the body. Potentially the more brown fat we have the less likely we are to lay down excess energy or food as white fat.

Michael Symonds, Professor of Developmental Physiology in the School of Clinical Sciences, led a team of scientists and doctors at The University of Nottingham who have pioneered the thermal imaging process so we can assess how much brown fat we’ve got and how much heat it is producing. Their research has just been published in the Journal of Pediatrics.

The University of Nottingham’s Early Life Nutrition Research Unit is at the forefront of ground-breaking international research into managing brown adipose tissue using nutrition, exercise, and environmental and therapeutic interventions.

Thermogenic index for food labels

Professor Symonds said: “Potentially the more brown fat you have or the more active your brown fat is you produce more heat and as a result you might be less likely to lay down excess energy or food as white fat.

“This completely non-invasive technique could play a crucial role in our fight against obesity. Potentially we could add a thermogenic index to food labels to show whether that product would increase or decrease heat production within brown fat. In other words whether it would speed up or slow down the amount of calories we burn.”

The obesity threat

Obesity is one of the biggest challenges we face in Europe and America as our children grow older. It affects 155 million children worldwide. In the UK the number of overweight children doubled in the 1990s.

Dr Helen Budge, Clinical Associate Professor and Reader in Neonatology, said: “Babies have a larger amount of brown fat which they use up to keep warm soon after birth making our study’s finding that this healthy fat can also generate heat in childhood and adolescence very exciting.”

Professor Symonds and his team say their ground-breaking research could lead to a better understanding of how brown fat balances the energy from the food we eat with the energy our bodies actually use up.

Professor Symonds, together with Dr Budge and their team from the University’s School of Clinical Sciences has shown that the neck region in healthy children produces heat. With the help of local school children they found that this region, which is known to contain brown adipose tissue, rapidly switches on to produce heat. This capacity is much greater in young children compared with adolescents and adults. The researchers are now using their findings to explore interventions designed to promote energy use as heat and, thus, prevent excess weight gain in both children and adults.

New non-invasive technology

Professor Symonds said: “Using our imaging technique we can locate brown fat and assess its capacity to produce heat. It avoids harmful techniques which use radiation and enables detailed studies with larger groups of people. This may provide new insights into the role of brown fat in how we balance energy from the food we eat, with the energy our bodies use up.

This research goes to the heart of the University’s biggest ever fund raising appeal, Impact: The Nottingham Campaign, which is supporting lifelong health for children. Additional funding will allow more innovative approaches to be researched, developed and introduced across the globe. Find out more about our research and how you can support us at

Story credits
More information is available from Professor Michael Symonds, at The University of Nottingham, on +44 (0)115 823 0610,; or Dr Helen Budge, at The University of Nottingham, on +44 (0)115 823 0611,
Lindsay Brooke - Media Relations Manager
Email: Phone: +44 (0)115 951 5751 Location: King's Meadow Campus

Lindsay Brooke | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>