Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting obesity with thermal imaging

19.07.2012
Scientists at The University of Nottingham believe they’ve found a way of fighting obesity — with a pioneering technique which uses thermal imaging. This heat-seeking technology is being used to trace our reserves of brown fat — the body’s ‘good fat’ — which plays a key role in how quickly our body can burn calories as energy.

This special tissue known as Brown Adipose Tissue, or brown fat, produces 300 times more heat than any other tissue in the body. Potentially the more brown fat we have the less likely we are to lay down excess energy or food as white fat.

Michael Symonds, Professor of Developmental Physiology in the School of Clinical Sciences, led a team of scientists and doctors at The University of Nottingham who have pioneered the thermal imaging process so we can assess how much brown fat we’ve got and how much heat it is producing. Their research has just been published in the Journal of Pediatrics.

The University of Nottingham’s Early Life Nutrition Research Unit is at the forefront of ground-breaking international research into managing brown adipose tissue using nutrition, exercise, and environmental and therapeutic interventions.

Thermogenic index for food labels

Professor Symonds said: “Potentially the more brown fat you have or the more active your brown fat is you produce more heat and as a result you might be less likely to lay down excess energy or food as white fat.

“This completely non-invasive technique could play a crucial role in our fight against obesity. Potentially we could add a thermogenic index to food labels to show whether that product would increase or decrease heat production within brown fat. In other words whether it would speed up or slow down the amount of calories we burn.”

The obesity threat

Obesity is one of the biggest challenges we face in Europe and America as our children grow older. It affects 155 million children worldwide. In the UK the number of overweight children doubled in the 1990s.

Dr Helen Budge, Clinical Associate Professor and Reader in Neonatology, said: “Babies have a larger amount of brown fat which they use up to keep warm soon after birth making our study’s finding that this healthy fat can also generate heat in childhood and adolescence very exciting.”

Professor Symonds and his team say their ground-breaking research could lead to a better understanding of how brown fat balances the energy from the food we eat with the energy our bodies actually use up.

Professor Symonds, together with Dr Budge and their team from the University’s School of Clinical Sciences has shown that the neck region in healthy children produces heat. With the help of local school children they found that this region, which is known to contain brown adipose tissue, rapidly switches on to produce heat. This capacity is much greater in young children compared with adolescents and adults. The researchers are now using their findings to explore interventions designed to promote energy use as heat and, thus, prevent excess weight gain in both children and adults.

New non-invasive technology

Professor Symonds said: “Using our imaging technique we can locate brown fat and assess its capacity to produce heat. It avoids harmful techniques which use radiation and enables detailed studies with larger groups of people. This may provide new insights into the role of brown fat in how we balance energy from the food we eat, with the energy our bodies use up.

This research goes to the heart of the University’s biggest ever fund raising appeal, Impact: The Nottingham Campaign, which is supporting lifelong health for children. Additional funding will allow more innovative approaches to be researched, developed and introduced across the globe. Find out more about our research and how you can support us at http://tiny.cc/UoNImpact

Story credits
More information is available from Professor Michael Symonds, at The University of Nottingham, on +44 (0)115 823 0610, michael.symonds@nottingham.ac.uk; or Dr Helen Budge, at The University of Nottingham, on +44 (0)115 823 0611, helen.budge@nottingham.ac.uk
Lindsay Brooke - Media Relations Manager
Email: lindsay.brooke@nottingham.ac.uk Phone: +44 (0)115 951 5751 Location: King's Meadow Campus

Lindsay Brooke | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>