Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting cancer with dietary changes

27.05.2014

Dieting may decrease chances for metastases in triple negative breast cancers by strengthening the tissue surrounding the tumor

Calorie restriction, a kind of dieting in which food intake is decreased by a certain percentage, has been touted as way to help people live longer. New research suggests that there may be other benefits, including improving outcomes for women in breast cancer. According to a study published May 26th in Breast Cancer Research and Treatment, the triple negative subtype of breast cancer – one of the most aggressive forms – is less likely to spread, or metastasize, to new sites in the body when mice were fed a restricted diet.

"The diet turned on a epigenetic program that protected mice from metastatic disease," says senior author Nicole Simone, M.D., an associate professor in the department of Radiation Oncology at Thomas Jefferson University. Indeed, when mouse models of triple negative cancer were fed 30 percent less than what they ate when given free access to food, the cancer cells decreased their production of microRNAs 17 and 20 (miR 17/20). Researchers have found that this group of miRs is often increased in triple negative cancers that metastasize.

Breast cancer patients are often treated with hormonal therapy to block tumor growth, and steroids to counteract the side effects of chemotherapy. However, both treatments can cause a patient to have altered metabolism which can lead to weight gain. In fact, women gain an average of 10 pounds in their first year of treatment. Recent studies have shown that too much weight makes standard treatments for breast cancer less effective, and those who gain weight during treatment have worse cancer outcomes. "That's why it's important to look at metabolism when treating women with cancer," says Dr. Simone.

In earlier studies, Dr. Simone and colleagues had shown that calorie restriction boosted the tumor-killing effects of radiation therapy. This study aimed to examine which molecular pathways were involved in this cooperative effect.

The investigators noticed that microRNAs – a type of RNA that regulates other genes in the cell – specifically miR 17 and 20, decreased the most when mice were treated with both radiation and calorie restriction. This decrease in turn increased the production of proteins involved in maintaining the extracellular matrix. "Calorie restriction promotes epigenetic changes in the breast tissue that keep the extracellular matrix strong," says Dr. Simone. "A strong matrix creates a sort of cage around the tumor, making it more difficult for cancer cells to escape and spread to new sites in the body."

Understanding the link to miR 17 also gives researchers a molecular target for diagnosing cancers that are more likely to metastasize and, potentially, for developing a new drug to treat the cancers. In theory, a drug that decreased miR 17 could have the same effect on the extracellular matrix as calorie restriction. However, targeting a single molecular pathway, such as the miR17 is unlikely to be as effective as calorie restriction, says Dr. Simone. Triple negative breast cancers tend to be quite different genetically from patient to patient. If calorie restriction is as effective in women as it is in animal models, then it would likely change the expression patterns of a large set of genes, hitting multiple targets at once without toxicity.

In order to test that this hypothesis is true in humans, Dr. Simone is currently enrolling patients in the CaReFOR (Calorie Restriction for Oncology Research) trial. As the first trial like it in the country, women undergoing radiation therapy for breast cancer receive nutritional counseling and are guided through their weight loss plan as they undergo their treatment for breast cancer.

###

The authors declare no conflicts of interest.

The study was funded by the NCI Cancer Center Support Grant P30-CA56036 for the Kimmel Cancer Center.

For more information, please contact Edyta Zielinska, edyta.zielinska@jefferson.edu, 215-955-5291

Article reference: L. Jin, et al., "The metastatic potential of triple-negative breast cancer is decreased via caloric restriction-mediated reduction of the miR-17~92 cluster," Breast Cancer Res Treat, DOI 10.1007/s10549-014-2978-7, 2014.

About Jefferson

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Edyta Zielinska | Eurek Alert!
Further information:
http://www.jefferson.edu

Further reports about: Cancer breast calorie metastasize metastatic restriction treatments

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>