Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fighting cancer with dietary changes


Dieting may decrease chances for metastases in triple negative breast cancers by strengthening the tissue surrounding the tumor

Calorie restriction, a kind of dieting in which food intake is decreased by a certain percentage, has been touted as way to help people live longer. New research suggests that there may be other benefits, including improving outcomes for women in breast cancer. According to a study published May 26th in Breast Cancer Research and Treatment, the triple negative subtype of breast cancer – one of the most aggressive forms – is less likely to spread, or metastasize, to new sites in the body when mice were fed a restricted diet.

"The diet turned on a epigenetic program that protected mice from metastatic disease," says senior author Nicole Simone, M.D., an associate professor in the department of Radiation Oncology at Thomas Jefferson University. Indeed, when mouse models of triple negative cancer were fed 30 percent less than what they ate when given free access to food, the cancer cells decreased their production of microRNAs 17 and 20 (miR 17/20). Researchers have found that this group of miRs is often increased in triple negative cancers that metastasize.

Breast cancer patients are often treated with hormonal therapy to block tumor growth, and steroids to counteract the side effects of chemotherapy. However, both treatments can cause a patient to have altered metabolism which can lead to weight gain. In fact, women gain an average of 10 pounds in their first year of treatment. Recent studies have shown that too much weight makes standard treatments for breast cancer less effective, and those who gain weight during treatment have worse cancer outcomes. "That's why it's important to look at metabolism when treating women with cancer," says Dr. Simone.

In earlier studies, Dr. Simone and colleagues had shown that calorie restriction boosted the tumor-killing effects of radiation therapy. This study aimed to examine which molecular pathways were involved in this cooperative effect.

The investigators noticed that microRNAs – a type of RNA that regulates other genes in the cell – specifically miR 17 and 20, decreased the most when mice were treated with both radiation and calorie restriction. This decrease in turn increased the production of proteins involved in maintaining the extracellular matrix. "Calorie restriction promotes epigenetic changes in the breast tissue that keep the extracellular matrix strong," says Dr. Simone. "A strong matrix creates a sort of cage around the tumor, making it more difficult for cancer cells to escape and spread to new sites in the body."

Understanding the link to miR 17 also gives researchers a molecular target for diagnosing cancers that are more likely to metastasize and, potentially, for developing a new drug to treat the cancers. In theory, a drug that decreased miR 17 could have the same effect on the extracellular matrix as calorie restriction. However, targeting a single molecular pathway, such as the miR17 is unlikely to be as effective as calorie restriction, says Dr. Simone. Triple negative breast cancers tend to be quite different genetically from patient to patient. If calorie restriction is as effective in women as it is in animal models, then it would likely change the expression patterns of a large set of genes, hitting multiple targets at once without toxicity.

In order to test that this hypothesis is true in humans, Dr. Simone is currently enrolling patients in the CaReFOR (Calorie Restriction for Oncology Research) trial. As the first trial like it in the country, women undergoing radiation therapy for breast cancer receive nutritional counseling and are guided through their weight loss plan as they undergo their treatment for breast cancer.


The authors declare no conflicts of interest.

The study was funded by the NCI Cancer Center Support Grant P30-CA56036 for the Kimmel Cancer Center.

For more information, please contact Edyta Zielinska,, 215-955-5291

Article reference: L. Jin, et al., "The metastatic potential of triple-negative breast cancer is decreased via caloric restriction-mediated reduction of the miR-17~92 cluster," Breast Cancer Res Treat, DOI 10.1007/s10549-014-2978-7, 2014.

About Jefferson

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Edyta Zielinska | Eurek Alert!
Further information:

Further reports about: Cancer breast calorie metastasize metastatic restriction treatments

More articles from Health and Medicine:

nachricht Finding cannabinoids in hair does not prove cannabis consumption
07.10.2015 | Universitätsklinikum Freiburg

nachricht Older patients recover more slowly from concussion
06.10.2015 | Radiological Society of North America

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>