Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fighting cancer with dietary changes


Dieting may decrease chances for metastases in triple negative breast cancers by strengthening the tissue surrounding the tumor

Calorie restriction, a kind of dieting in which food intake is decreased by a certain percentage, has been touted as way to help people live longer. New research suggests that there may be other benefits, including improving outcomes for women in breast cancer. According to a study published May 26th in Breast Cancer Research and Treatment, the triple negative subtype of breast cancer – one of the most aggressive forms – is less likely to spread, or metastasize, to new sites in the body when mice were fed a restricted diet.

"The diet turned on a epigenetic program that protected mice from metastatic disease," says senior author Nicole Simone, M.D., an associate professor in the department of Radiation Oncology at Thomas Jefferson University. Indeed, when mouse models of triple negative cancer were fed 30 percent less than what they ate when given free access to food, the cancer cells decreased their production of microRNAs 17 and 20 (miR 17/20). Researchers have found that this group of miRs is often increased in triple negative cancers that metastasize.

Breast cancer patients are often treated with hormonal therapy to block tumor growth, and steroids to counteract the side effects of chemotherapy. However, both treatments can cause a patient to have altered metabolism which can lead to weight gain. In fact, women gain an average of 10 pounds in their first year of treatment. Recent studies have shown that too much weight makes standard treatments for breast cancer less effective, and those who gain weight during treatment have worse cancer outcomes. "That's why it's important to look at metabolism when treating women with cancer," says Dr. Simone.

In earlier studies, Dr. Simone and colleagues had shown that calorie restriction boosted the tumor-killing effects of radiation therapy. This study aimed to examine which molecular pathways were involved in this cooperative effect.

The investigators noticed that microRNAs – a type of RNA that regulates other genes in the cell – specifically miR 17 and 20, decreased the most when mice were treated with both radiation and calorie restriction. This decrease in turn increased the production of proteins involved in maintaining the extracellular matrix. "Calorie restriction promotes epigenetic changes in the breast tissue that keep the extracellular matrix strong," says Dr. Simone. "A strong matrix creates a sort of cage around the tumor, making it more difficult for cancer cells to escape and spread to new sites in the body."

Understanding the link to miR 17 also gives researchers a molecular target for diagnosing cancers that are more likely to metastasize and, potentially, for developing a new drug to treat the cancers. In theory, a drug that decreased miR 17 could have the same effect on the extracellular matrix as calorie restriction. However, targeting a single molecular pathway, such as the miR17 is unlikely to be as effective as calorie restriction, says Dr. Simone. Triple negative breast cancers tend to be quite different genetically from patient to patient. If calorie restriction is as effective in women as it is in animal models, then it would likely change the expression patterns of a large set of genes, hitting multiple targets at once without toxicity.

In order to test that this hypothesis is true in humans, Dr. Simone is currently enrolling patients in the CaReFOR (Calorie Restriction for Oncology Research) trial. As the first trial like it in the country, women undergoing radiation therapy for breast cancer receive nutritional counseling and are guided through their weight loss plan as they undergo their treatment for breast cancer.


The authors declare no conflicts of interest.

The study was funded by the NCI Cancer Center Support Grant P30-CA56036 for the Kimmel Cancer Center.

For more information, please contact Edyta Zielinska,, 215-955-5291

Article reference: L. Jin, et al., "The metastatic potential of triple-negative breast cancer is decreased via caloric restriction-mediated reduction of the miR-17~92 cluster," Breast Cancer Res Treat, DOI 10.1007/s10549-014-2978-7, 2014.

About Jefferson

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Edyta Zielinska | Eurek Alert!
Further information:

Further reports about: Cancer breast calorie metastasize metastatic restriction treatments

More articles from Health and Medicine:

nachricht Laboratory study: Scientists from Cologne explore a new approach to prevent newborn epilepsies
24.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht U of T research sheds new light on mysterious fungus that has major health consequences
23.11.2015 | University of Toronto

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>