Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting cancer with dietary changes

27.05.2014

Dieting may decrease chances for metastases in triple negative breast cancers by strengthening the tissue surrounding the tumor

Calorie restriction, a kind of dieting in which food intake is decreased by a certain percentage, has been touted as way to help people live longer. New research suggests that there may be other benefits, including improving outcomes for women in breast cancer. According to a study published May 26th in Breast Cancer Research and Treatment, the triple negative subtype of breast cancer – one of the most aggressive forms – is less likely to spread, or metastasize, to new sites in the body when mice were fed a restricted diet.

"The diet turned on a epigenetic program that protected mice from metastatic disease," says senior author Nicole Simone, M.D., an associate professor in the department of Radiation Oncology at Thomas Jefferson University. Indeed, when mouse models of triple negative cancer were fed 30 percent less than what they ate when given free access to food, the cancer cells decreased their production of microRNAs 17 and 20 (miR 17/20). Researchers have found that this group of miRs is often increased in triple negative cancers that metastasize.

Breast cancer patients are often treated with hormonal therapy to block tumor growth, and steroids to counteract the side effects of chemotherapy. However, both treatments can cause a patient to have altered metabolism which can lead to weight gain. In fact, women gain an average of 10 pounds in their first year of treatment. Recent studies have shown that too much weight makes standard treatments for breast cancer less effective, and those who gain weight during treatment have worse cancer outcomes. "That's why it's important to look at metabolism when treating women with cancer," says Dr. Simone.

In earlier studies, Dr. Simone and colleagues had shown that calorie restriction boosted the tumor-killing effects of radiation therapy. This study aimed to examine which molecular pathways were involved in this cooperative effect.

The investigators noticed that microRNAs – a type of RNA that regulates other genes in the cell – specifically miR 17 and 20, decreased the most when mice were treated with both radiation and calorie restriction. This decrease in turn increased the production of proteins involved in maintaining the extracellular matrix. "Calorie restriction promotes epigenetic changes in the breast tissue that keep the extracellular matrix strong," says Dr. Simone. "A strong matrix creates a sort of cage around the tumor, making it more difficult for cancer cells to escape and spread to new sites in the body."

Understanding the link to miR 17 also gives researchers a molecular target for diagnosing cancers that are more likely to metastasize and, potentially, for developing a new drug to treat the cancers. In theory, a drug that decreased miR 17 could have the same effect on the extracellular matrix as calorie restriction. However, targeting a single molecular pathway, such as the miR17 is unlikely to be as effective as calorie restriction, says Dr. Simone. Triple negative breast cancers tend to be quite different genetically from patient to patient. If calorie restriction is as effective in women as it is in animal models, then it would likely change the expression patterns of a large set of genes, hitting multiple targets at once without toxicity.

In order to test that this hypothesis is true in humans, Dr. Simone is currently enrolling patients in the CaReFOR (Calorie Restriction for Oncology Research) trial. As the first trial like it in the country, women undergoing radiation therapy for breast cancer receive nutritional counseling and are guided through their weight loss plan as they undergo their treatment for breast cancer.

###

The authors declare no conflicts of interest.

The study was funded by the NCI Cancer Center Support Grant P30-CA56036 for the Kimmel Cancer Center.

For more information, please contact Edyta Zielinska, edyta.zielinska@jefferson.edu, 215-955-5291

Article reference: L. Jin, et al., "The metastatic potential of triple-negative breast cancer is decreased via caloric restriction-mediated reduction of the miR-17~92 cluster," Breast Cancer Res Treat, DOI 10.1007/s10549-014-2978-7, 2014.

About Jefferson

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Edyta Zielinska | Eurek Alert!
Further information:
http://www.jefferson.edu

Further reports about: Cancer breast calorie metastasize metastatic restriction treatments

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>