Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feinstein scientists identify abnormal disease pathway in dystonia

13.04.2011
Scientists tried creating a laboratory model of idiopathic torsion dystonia, a neurological condition marked by uncontrolled movements, particularly twisting and abnormal postures. But the genetic defect that causes dystonia in humans didn't seem to work in the laboratory models that showed no symptoms whatsoever.

Now, a team of scientists at The Feinstein Institute for Medical Research have figured out why and the finding could lead to ways to test novel treatments. Aziz M. Ulug, PhD, and his colleagues at the Feinstein's Center for Neurosciences wanted to understand why some people with a gene that causes dystonia never get symptoms and others with the same mutation are disabled by the abnormal movements. Since the first dystonia gene was identified in the 1990s, scientists have observed that most people who carry this mutation never develop symptoms.

Last year, a team led by David Eidelberg, MD, head of the Feinstein Institute's Center for Neuroscience, figured out why the majority of these mutation carriers are protected from symptoms – they have an additional lesion that evens the score. In an article published in the Journal of Neuroscience, the team described two separate areas along the brain pathway that links the cerebellum to the motor cortex. The integrity of the pathway in these two regions together determines whether a mutation carrier will display clinical manifestations of the disease.

New advances in diffusion imaging in humans led to the discovery that there were two places along the motor pathway that seemed to stop the flow of neural signals from one part of the circuit to the other. Those with only one lesion in the circuit developed the debilitating movements and those with two lesions did not. "We found a consistent cerebellar pathway problem in all DYT1 carriers. When we went back and looked at those without symptoms, we saw that they had an additional lesion downstream in the portion of the pathway connecting directly to the motor cortex," said Dr. Eidelberg. "This second area of pathway disruption abrogated the effects of the first lesion."

Normally, the cerebellum (a region that controls movement) puts the breaks on the motor cortex by potentiating inhibition at the cortical level. It is likely that mutation carriers have a developmental problem in the flow of neural signals along this circuit such that the brain cannot inhibit an unwanted movement. With the second pathway lesion, Dr. Eidelberg explained, "the flow is shut off and the abnormal activity stops."

The Feinstein team has since looked at laboratory models to try to figure out why this second lesion is protective. Since the identification of the DYT1 gene, scientists have been trying to create a genetic model of the movement disorder. But when they placed the same mutation in an experimental mouse model, there was a major problem: no symptoms. Dr. Ulug's team used a novel magnetic resonance approach to understand why the mutant animals were clinically normal. They found that the mutant mice displayed the same two pathway abnormalities that were found in the human gene carriers. However, the animals had dual lesions across the board, resembling the 70 percent of carriers who fail to display clinical manifestations of the disease. The study was published in the Proceedings of the National Academy of Sciences.

Knowing this critical piece of the puzzle may enable scientists to create true laboratory models of the disease – with symptoms that mimic what is seen in patients. These findings may help to design treatments to make the symptomatic carriers of dystonia genes more like their unaffected counterparts with the same genetic mutation.

There are half a million people in the United States with dystonia. The brains of people with inherited dystonia are normal at autopsy and the exact cause of their movement abnormality is unknown.

About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, The Feinstein Institute for Medical Research is home to international scientific leaders in cancer, leukemia, lymphoma, Parkinson's disease, Alzheimer's disease, psychiatric disorders, substance abuse, rheumatoid arthritis, lupus, sepsis, inflammatory bowel disease, diabetes, human genetics, neuroimmunology and medicinal chemistry. Feinstein researchers are developing new drugs and drug targets, and producing results where science meets the patient, annually enrolling some 10,000 subjects into clinical research programs.

Jamie Talan | EurekAlert!
Further information:
http://www.nshs.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>