Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feinstein Institute researchers discover a protein that triggers inflammatory responses in hemorrhage and sepsis

07.10.2013
Investigators at The Feinstein Institute for Medical Research have discovered a protein in the human body that can trigger and mediate inflammation in patients suffering from hemorrhage and sepsis. The findings were published in the online version of Nature Medicine on October 6, 2013.

Thirty-seven million people are admitted to the emergency room with traumatic injury each year, and these injuries are a leading cause of death in the US. Two major reasons why traumatic injury is so deadly are loss of blood (hemorrhage) and a clinical condition called sepsis.

Sepsis occurs when molecules released into the bloodstream to fight an injury or infection trigger inflammation throughout the body. Inflammation is necessary for maintaining good health – without inflammation, wounds and infections would never be controlled or heal. However, persistent and constant inflammation often results in organ dysfunction or damage, leading to patient death – 28 to 50 percent of people who suffer from sepsis die from the condition.

For years, Feinstein Institute scientists have been researching ways to treat sepsis by halting persistent and constant inflammation. As a result of this effort, Ping Wang, MD, director for the Laboratory of Surgical Research and head of the Center for Translational Research at the Feinstein Institute, and his colleagues discovered that a protein called cold-inducible RNA-binding protein (CIRP) is increased and released into the bloodstream in response to hemorrhagic shock and sepsis. When CIRP triggers inflammation, it contributes to damage of organs in the body. Dr. Wang hypothesized that if CIRP activity is blocked, causing reduced inflammation, then patient survival will improve. To test this theory, he and his colleagues observed that treatment with an antibody against CIRP significantly increased survival rates during hemorrhage and sepsis in preclinical studies.

"In this study, we identified a small peptide that can be potentially developed as anti-CIRP compound," said Dr. Wang. "What this means for patients is that we may have discovered a molecule that could be used in the future to treat hemorrhage and sepsis and save many lives."

"There's a great need for new ways to diagnose and treat sepsis," said Sarah Dunsmore, PhD, of the National Institute of Health's National Institute of General Medical Sciences, which partially funded the research. "By targeting molecules such as CIRP, which are part of the body's normal response to stress, we may be able to tailor each patient's treatment based on how much damage has already been done and which organs are at risk of failure. Dr. Wang's work may also provide insight into how healthy cells survive extreme temperatures and other stressors, information that might be harnessed to treat a variety of disorders."

About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, The Feinstein Institute for Medical Research is home to international scientific leaders in many areas including Parkinson's disease, Alzheimer's disease, psychiatric disorders, rheumatoid arthritis, lupus, sepsis, human genetics, pulmonary hypertension, leukemia, neuroimmunology, and medicinal chemistry. The Feinstein Institute, part of the North Shore-LIJ Health System, ranks in the top 5th percentile of all National Institutes of Health grants awarded to research centers. For more information, visit http://www.FeinsteinInstitute.org.

Emily Ng | EurekAlert!
Further information:
http://www.nshs.edu
http://www.FeinsteinInstitute.org

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>