Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Feinstein Institute researchers discover a protein that triggers inflammatory responses in hemorrhage and sepsis

Investigators at The Feinstein Institute for Medical Research have discovered a protein in the human body that can trigger and mediate inflammation in patients suffering from hemorrhage and sepsis. The findings were published in the online version of Nature Medicine on October 6, 2013.

Thirty-seven million people are admitted to the emergency room with traumatic injury each year, and these injuries are a leading cause of death in the US. Two major reasons why traumatic injury is so deadly are loss of blood (hemorrhage) and a clinical condition called sepsis.

Sepsis occurs when molecules released into the bloodstream to fight an injury or infection trigger inflammation throughout the body. Inflammation is necessary for maintaining good health – without inflammation, wounds and infections would never be controlled or heal. However, persistent and constant inflammation often results in organ dysfunction or damage, leading to patient death – 28 to 50 percent of people who suffer from sepsis die from the condition.

For years, Feinstein Institute scientists have been researching ways to treat sepsis by halting persistent and constant inflammation. As a result of this effort, Ping Wang, MD, director for the Laboratory of Surgical Research and head of the Center for Translational Research at the Feinstein Institute, and his colleagues discovered that a protein called cold-inducible RNA-binding protein (CIRP) is increased and released into the bloodstream in response to hemorrhagic shock and sepsis. When CIRP triggers inflammation, it contributes to damage of organs in the body. Dr. Wang hypothesized that if CIRP activity is blocked, causing reduced inflammation, then patient survival will improve. To test this theory, he and his colleagues observed that treatment with an antibody against CIRP significantly increased survival rates during hemorrhage and sepsis in preclinical studies.

"In this study, we identified a small peptide that can be potentially developed as anti-CIRP compound," said Dr. Wang. "What this means for patients is that we may have discovered a molecule that could be used in the future to treat hemorrhage and sepsis and save many lives."

"There's a great need for new ways to diagnose and treat sepsis," said Sarah Dunsmore, PhD, of the National Institute of Health's National Institute of General Medical Sciences, which partially funded the research. "By targeting molecules such as CIRP, which are part of the body's normal response to stress, we may be able to tailor each patient's treatment based on how much damage has already been done and which organs are at risk of failure. Dr. Wang's work may also provide insight into how healthy cells survive extreme temperatures and other stressors, information that might be harnessed to treat a variety of disorders."

About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, The Feinstein Institute for Medical Research is home to international scientific leaders in many areas including Parkinson's disease, Alzheimer's disease, psychiatric disorders, rheumatoid arthritis, lupus, sepsis, human genetics, pulmonary hypertension, leukemia, neuroimmunology, and medicinal chemistry. The Feinstein Institute, part of the North Shore-LIJ Health System, ranks in the top 5th percentile of all National Institutes of Health grants awarded to research centers. For more information, visit

Emily Ng | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>