Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do we feel jet-lag?

14.12.2011
Insights in neuroscience research from the Toyohashi Tech Bulletin

Human biochemical processes are controlled by internal body clocks with an approximately 24 h period—circadian rhythms.

In mammals, the suprachiasmatic nucleus (SCN) contains self-sustained circadian oscillator as master pacemakers. The expression of clock gene Period1 (Per1) oscillates autonomously in the SCN and is induced immediately after a light pulse.

Per1 is an indispensable member of the central clock system, since the constitutive expression of Per1 in the SCN modifies physiological and behavioral rhythms [1]. The SCN and peripheral tissues are compared about the ability of phase shift using realtime monitoring system from same animal.

Now, Shin Yamazaki, Rika Numano, Michikazu Abe and colleagues at University of Virginia and University of Tokyo constructed Per1:luc Tg rats in which firefly luciferase was rhythmically expressed under the control of the mouse Per1 promoter [2].

Rhythmic emission from the cultured Per1:luc SCN slices persisted for some months in vitro, while those from peripheral tissues such as the liver damped after two to seven cycles. These results show that a self-sustained circadian pacemaker in the SCN entrains circadian oscillators in the periphery.

Next, the researchers compared the phase shift ability of light and dark (LD) cycles between the SCN and peripheral tissues. The phase-shifting paradigm is closely analogous to trans-Atlantic flights from west to east (6 h advance) and from east to west (6 h delay).

The emissional rhythms in the SCN shifted 6 h most rapidly within one day, while those in peripheral tissues took more than two days. Circadian oscillators in the periphery were temporarily lost following large and abrupt shifts in the environmental light cycle.

Notably, jetlag can be explained as a condition where the rhythms in the SCN and peripheral tissues are desynchronized.

[1] Rika Numano et.al., Proc. Natl. Acad. Sci. U S A, 103, 3716, (2006)

[2] Shin Yamazaki1*, Rika Numano2*, Michikazu Abe1*, Akiko Hida2, Ri-ichi Takahashi3, Masatsugu Ueda3, Gene D. Block1, Yoshiyuki Sakaki2, Michael Menaker1, Hajime Tei2 *These authors contributed equally to this work.

Resetting central and peripheral circadian oscillators in transgenic rats.
Science, 288, 682, (2000).
DOI: 10.1126/science.288.5466.682
1NSF Center, Univ. of Virginia, 2Inst. of Medical Science, Univ. of Tokyo,3Y.S. New Technology Institute Inc.

Adarsh Sandhu | Research asia research news
Further information:
http://www.tut.ac.jp/english/
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>