Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FDG-PET appears promising for predicting prognosis of patients with inoperable NSCLC

06.10.2011
The prognosis for patients with stage II and III inoperable non-small cell lung cancer (NSCLC) is poor, with only about 15 percent of patients surviving at five years post-treatment for the disease.

While new treatment strategies are being intensely studied, timely assessment of their efficacy has proven difficult. In a presentation today, Mitchell Machtay, MD, principal investigator of the ACRIN 6668/RTOG 0235 trial and RTOG deputy chair, reported the that post-treatment F-18 fluorodeoxyglucose-positron emission tomography (FDG-PET) scans show promise for predicting the prognosis of patients with inoperable disease.

"These results are encouraging," says Machtay. "Definitive prognostic information after a patient completes therapy has not been available for making decisions about further treatment options, and these preliminary results suggest that FDG-PET may play an important role in that regard."

Twenty ACRIN and RTOG participating sites enrolled 251 patients into the phase III trial that gathered pre- and post-treatment FDG-PET scans — treatment included both chemotherapy and radiation therapy. Specifically, investigators sought to determine if the standardized uptake value (SUV), a quantitative measure of how rapidly tumor cells are using the glucose-based FDG radiotracer, obtained on post-treatment FDG-PET scans was predictive of a patient's survival. As Machtay reported, "The post-treatment scan was predictive for patients' prognosis by identifying that patients with high levels of FDG uptake following treatment had more aggressive tumors that were more likely to recur, and the higher the SUV measure in the primary tumor, the greater the recurrence rate and the lower a patient's corresponding survival outlook."

"The results announced today suggest that FDG-PET has a role in helping physicians make more informed treatment decisions, such as starting a patient on a new chemotherapy program," says Barry Siegel, MD, ACRIN co-deputy chair and medical director of the ACR PET Imaging Core Laboratory, "and helping investigators determine whether a treatment regimen is worthy of further study before long-term survival data are available."

The FDG-PET scan results provided for this analysis were interpreted by physicians at the participating sites. Further analyses are ongoing evaluating scan data interpreted by central review at the ACR Imaging Core Laboratory and using other semi-quantitative measures.

The study is supported by the NCI: ACRIN grants U01 CA 079778 and CA080098, and RTOG grants U10 CA21661 and CA37422.

For interviews with an ACRIN or RTOG investigator, please contact Heather Curry at 703-390-9822 or PR@acr.org.

ACRIN, a member of the NCI Clinical Trials Cooperative Group program, is made up of investigators from over 100 academic and community-based facilities in the United States and abroad. ACRIN's oncology mission is to develop information through clinical trials of medical imaging with the potential to increase the length and quality of life of cancer patients. As recently announced, the oncology research agendas of ACRIN and the Eastern Cooperative Oncology Group are soon to be merged, with biomarker research as a central focus. ACRIN also carries out research through its cardiovascular and neuroscience committees. Its imaging core laboratory supports the imaging operations of the ACRIN enterprise as well as other organizations carrying out imaging research. ACRIN is headquartered at the ACR Clinical Research Center in Philadelphia, PA. The ACRIN Biostatistics Center is located at Brown University in Providence, RI. www.acrin.org

The Radiation Therapy Oncology Group (RTOG) is administered by the American College of Radiology (ACR) and located in the ACR Center for Clinical Research in Philadelphia, PA. RTOG is a multi-institutional, international clinical cooperative group funded primarily by National Cancer Institute grants CA21661, CA32115 and CA37422. RTOG has 40 years of experience in conducting clinical trials and is comprised of over 300 major research institutions in the United States, Canada and internationally. The group currently is currently accruing to 40 studies that involve radiation therapy alone or in conjunction with surgery and/or chemotherapeutic drugs or which investigate quality of life issues and their effects on the cancer patient. The American College of Radiology (ACR) is a national professional organization serving more than 32,000 radiologists, radiation oncologists, interventional radiologists and medical physicists with programs focusing on the practice of radiology and the delivery of comprehensive health care services.

Heather Curry | EurekAlert!
Further information:
http://www.acr.org
http://www.rtog.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>