Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty clean-up process may be key event in Huntington's disease

12.04.2010
Findings by Einstein researchers suggest treatment strategies

In a step towards a possible treatment for Huntington's disease, scientists at Albert Einstein College of Medicine of Yeshiva University have shown for the first time that the accumulation of a mutated protein may explain damaging cellular behavior in Huntington's disease. Their research is described in the April 11 online edition of Nature Neuroscience.

Huntington's disease, which afflicted the folksinger Woody Guthrie, is a fatal, inherited neurodegenerative disorder. While subtle personality changes and diminished physical skills may occur early in the disease, it typically becomes noticeable during middle age. Later problems include dementia and chorea – jerky movements that are random and uncontrollable.

Huntington's disease results from a gene mutation that leads to a defective form of the huntingtin protein. The mutation is dominant, meaning that a child of an affected parent has a 50 percent chance of inheriting Huntington's. And since the defective protein is present in all of a person's cells, the disease causes problems in the brain and throughout the body.

"Studies have shown that Huntington's disease occurs in part because the mutated huntingtin protein accumulates within cells and is toxic to them," said Ana Maria Cuervo, M.D., Ph.D., professor of developmental and molecular biology, of anatomy and structural biology, and of medicine at Einstein and senior author of the Nature Neuroscience study. "In our investigation of how the accumulating huntingtin protein affects the functioning of cells, we found that it interferes with the cells' ability to digest and recycle their contents."

All cells rely on several different mechanisms to break down "old" proteins and other components and recycle them. Collectively known as autophagy (literally, "self-eating"), these processes keep cells clean and uncluttered and provide them with replacement parts that will function better.

Dr. Cuervo and her team had previously shown that a glitch in autophagy may trigger Parkinson's disease by allowing a toxic protein to accumulate. She suspected that something similar was going on in Huntington's disease. After studying two mouse models of Huntington's disease as well as lymphoblasts (white cells) from people with the disease, she and her team found that the mutated huntingtin protein was sabotaging the cell's garbage-collecting efforts.

One mechanism for cleaning up cells involves forming a membrane around the protein or other cellular structure requiring removal. These "garbage bags" (more formally known as autophagosomes) then travel to enzyme-filled sacs known as lysosomes that fuse with the bags and digest their cargo. But the clean-up efforts go awry in Huntington's disease.

Dr. Cuervo and her team found that the defective huntingtin proteins stick to the inner layer of autophagosomes, preventing them from gathering garbage. The result: Autophagosomes arrive empty at the lysosomes; and cellular components that should be recycled instead accumulate, causing toxicity that probably contributes to cell death.

This finding, Dr. Cuervo noted, shows that activating the lysosomes of cells – one of the proposed treatments for Huntington's disease – won't do any good.

"It doesn't matter how active your lysosomes are if they're not going to receive any cellular components to digest," she said. "Instead, we should focus on treatments to help autophagosomes recognize intracellular garbage, perhaps by minimizing their contact with the defective huntingtin protein. By enhancing the clearance of cellular debris, we may be able to keep Huntington's patients free of symptoms for a longer time."

The paper, "Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease," appears in the April 11 online issue of Nature Neuroscience. The research was initiated by Marta Martinez-Vicente, Ph.D., a postdoctoral fellow in Dr. Cuervo's lab, who is now at the Institute of Neuropathology in Barcelona, Spain. Esther Wong, Ph.D., currently a postdoctoral fellow with Dr. Cuervo, continued and completed the research. Other Einstein researchers involved in the study were Hiroshi Koga, Ph.D., Susmita Kaushik Ph.D., and Esperanza Arias Ph.D. This work was done in collaboration with the team of Dr. David Sulzer at Columbia University Medical School.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2009-2010 academic year, Einstein is home to 2,775 faculty members, 722 M.D. students, 243 Ph.D. students, 128 students in the combined M.D./Ph.D. program, and approximately 350 postdoctoral research fellows. In 2009, Einstein received more than $155 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five medical centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Deirdre Branley | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>