Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty foods -- not empty stomach -- fire up hunger hormone

09.06.2009
New research led by the University of Cincinnati (UC) suggests that the hunger hormone ghrelin is activated by fats from the foods we eat—not those made in the body—in order to optimize nutrient metabolism and promote the storage of body fat.

The findings, the study's author says, turn the current model about ghrelin on its head and point to a novel stomach enzyme (GOAT) responsible for the ghrelin activation process that could be targeted in future treatments for metabolic diseases.

The laboratory study, led by Matthias Tschöp, MD, UC associate professor of psychiatry and internal medicine, is published online ahead of print Friday, June 5, 2009, in the journal Nature Medicine.

Ghrelin is a hormone that was believed to accumulate during periods of fasting and is found in the body in high concentrations just before meals. It is dubbed the "hunger hormone" because it has been shown that administration of pharmacological doses acts in the brain to stimulate hunger and increase food intake in animal models and humans.

The ghrelin hormone is unique in that it requires acylation (the addition of a fatty acid) by a specific enzyme (ghrelin O-acyl transferase, or GOAT) for activation. Originally it was assumed that the fatty acids attached to ghrelin by GOAT were produced by the body during fasting.

The new data by Tschöp and his team suggests that the fatty acids needed for ghrelin activation actually come directly from ingested dietary fats. In a departure from an earlier model that was upheld for nearly a decade, Tschöp says, it appears that the ghrelin system is a lipid sensor in the stomach that informs the brain when calories are available—giving the green light to other calorie-consuming processes such as growing.

Tschöp and his team used mouse models to test the effects of over expressing the GOAT enzyme, or "knocking it out." They found that, when exposed to a lipid-rich diet, mice without GOAT accumulated less fat than normal mice, while those with over-expressed GOAT accumulated more fat mass than normal mice.

"When exposed to certain fatty foods, mice with more GOAT gain more fat," says Tschöp. "Mice without GOAT gain less fat since their brain does not receive the 'fats are here, store them' signal."

Tschöp says that although his study can't be immediately extrapolated to humans, recent human studies at the University of Virginia measured (separately) active and inactive ghrelin concentrations. Those studies showed that during fasting, active ghrelin levels were flat, but during the presence of fat from foods, ghrelin levels peaked with meals as previously described. Tschöp says these human studies support the new model for ghrelin.

"Our GOAT studies in mice offer an explanation of what could have been happening during the longer fasting periods in these human studies," Tschöp adds. "Without dietary fats, ghrelin peaks remain inactive and don't affect storage of fat.

"We are particularly interested in how ghrelin may be involved in the rapid benefits of gastric bypass surgery," says Tschöp. "This powerful obesity therapy frequently reduces appetite and improves metabolism before substantial weight loss occurs. Intriguingly, this procedure causes food to bypass the stomach and gut sections that contain GOAT/ghrelin cells, which, based on this newly described model, would prevent ghrelin activation."

The study was supported by the Leibniz Graduate College and by the National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases.

Co-authors include Paul Pfluger, PhD, and Ronald Jandacek, PhD, both from the University of Cincinnati; Henriette Kirchner, graduate student from the University of Cincinnati and the German Institute of Human Nutrition; Annette Schürmann, PhD, and Hans-Georg Joost, MD, PhD, both of the German Institute of Human Nutrition; and Traci Czyzyk, PhD, John Hale, PhD, Mark Heiman, PhD, Jesus Gutierrez, PhD, Patricia Solenberg, PhD, and Jill Willency, PhD, all from Lilly Research Laboratories.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>