Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty foods -- not empty stomach -- fire up hunger hormone

09.06.2009
New research led by the University of Cincinnati (UC) suggests that the hunger hormone ghrelin is activated by fats from the foods we eat—not those made in the body—in order to optimize nutrient metabolism and promote the storage of body fat.

The findings, the study's author says, turn the current model about ghrelin on its head and point to a novel stomach enzyme (GOAT) responsible for the ghrelin activation process that could be targeted in future treatments for metabolic diseases.

The laboratory study, led by Matthias Tschöp, MD, UC associate professor of psychiatry and internal medicine, is published online ahead of print Friday, June 5, 2009, in the journal Nature Medicine.

Ghrelin is a hormone that was believed to accumulate during periods of fasting and is found in the body in high concentrations just before meals. It is dubbed the "hunger hormone" because it has been shown that administration of pharmacological doses acts in the brain to stimulate hunger and increase food intake in animal models and humans.

The ghrelin hormone is unique in that it requires acylation (the addition of a fatty acid) by a specific enzyme (ghrelin O-acyl transferase, or GOAT) for activation. Originally it was assumed that the fatty acids attached to ghrelin by GOAT were produced by the body during fasting.

The new data by Tschöp and his team suggests that the fatty acids needed for ghrelin activation actually come directly from ingested dietary fats. In a departure from an earlier model that was upheld for nearly a decade, Tschöp says, it appears that the ghrelin system is a lipid sensor in the stomach that informs the brain when calories are available—giving the green light to other calorie-consuming processes such as growing.

Tschöp and his team used mouse models to test the effects of over expressing the GOAT enzyme, or "knocking it out." They found that, when exposed to a lipid-rich diet, mice without GOAT accumulated less fat than normal mice, while those with over-expressed GOAT accumulated more fat mass than normal mice.

"When exposed to certain fatty foods, mice with more GOAT gain more fat," says Tschöp. "Mice without GOAT gain less fat since their brain does not receive the 'fats are here, store them' signal."

Tschöp says that although his study can't be immediately extrapolated to humans, recent human studies at the University of Virginia measured (separately) active and inactive ghrelin concentrations. Those studies showed that during fasting, active ghrelin levels were flat, but during the presence of fat from foods, ghrelin levels peaked with meals as previously described. Tschöp says these human studies support the new model for ghrelin.

"Our GOAT studies in mice offer an explanation of what could have been happening during the longer fasting periods in these human studies," Tschöp adds. "Without dietary fats, ghrelin peaks remain inactive and don't affect storage of fat.

"We are particularly interested in how ghrelin may be involved in the rapid benefits of gastric bypass surgery," says Tschöp. "This powerful obesity therapy frequently reduces appetite and improves metabolism before substantial weight loss occurs. Intriguingly, this procedure causes food to bypass the stomach and gut sections that contain GOAT/ghrelin cells, which, based on this newly described model, would prevent ghrelin activation."

The study was supported by the Leibniz Graduate College and by the National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases.

Co-authors include Paul Pfluger, PhD, and Ronald Jandacek, PhD, both from the University of Cincinnati; Henriette Kirchner, graduate student from the University of Cincinnati and the German Institute of Human Nutrition; Annette Schürmann, PhD, and Hans-Georg Joost, MD, PhD, both of the German Institute of Human Nutrition; and Traci Czyzyk, PhD, John Hale, PhD, Mark Heiman, PhD, Jesus Gutierrez, PhD, Patricia Solenberg, PhD, and Jill Willency, PhD, all from Lilly Research Laboratories.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>