Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat in the liver -- not the belly -- is a better marker for disease risk

26.08.2009
New findings from nutrition researchers at Washington University School of Medicine in St. Louis suggest that it's not whether body fat is stored in the belly that affects metabolic risk factors for diabetes, high blood triglycerides and cardiovascular disease, but whether it collects in the liver.

Having too much liver fat is known as nonalcoholic fatty liver disease. The researchers report online in the journal PNAS Early Edition that when fat collects in the liver, people experience serious metabolic problems such as insulin resistance, which affects the body's ability to metabolize sugar.

They also have increases in production of fat particles in the liver that are secreted into the bloodstream and increase the level of triglycerides.

For years, scientists have noted that where individuals carried body fat influences their metabolic and cardiovascular risk. Increased fat inside the belly, known as visceral fat, is associated with an increased risk of diabetes and heart disease.

"Data from a large number of studies shows that visceral fat is associated with metabolic risk, which has led to the belief that visceral fat might even cause metabolic dysfunction," says senior investigator Samuel Klein, M.D. "However, visceral fat tracks closely with liver fat. We have found that excess fat in the liver, not visceral fat, is a key marker of metabolic dysfunction. Visceral fat might simply be an innocent bystander that is associated with liver fat."

Klein, the Danforth Professor of Medicine and Nutritional Science, directs the Division of Geriatrics and Nutritional Science and the Center for Applied Research Studies, as well as Washington University's Center for Human Nutrition. He says most of our body fat, called subcutaneous fat, is located under our skin, but about 10 percent is present inside the belly, while much smaller amounts are found inside organs such as the liver and muscle.

This study compared obese people with elevated and normal amounts of liver fat. All subjects were matched by age, sex, body mass index, percent body fat and degree of obesity. Through careful evaluations of obese people with different amounts of visceral fat or liver fat, Klein's team determined that excess fat inside the liver identifies those individuals who are at risk for metabolic problems.

"We don't know exactly why some fats, particularly triglycerides, will accumulate inside the liver and muscle in some people but not in others," says first author Elisa Fabbrini, M.D., Ph.D., assistant professor of medicine. "But our data suggest that a protein called CD36, which controls the transport of fatty acids from the bloodstream into different tissues, is involved."

Fatty acids are the building blocks for making fats, known as triglycerides. Klein, Fabbrini and their colleagues found that CD36 levels were lower in fat tissue and higher in muscle tissue among people with elevated liver fat.

Fabbrini and Klein say changes in CD36 activity could be responsible for diverting circulating fatty acids away from fat tissue and into liver and muscle tissue, where they are converted to triglyceride. Increased tissue uptake of fatty acids could be responsible for metabolic dysfunction.

Klein says those who are obese but don't have high levels of fat in the liver should be encouraged to lose weight, but those with elevated liver fat are at particularly high risk for heart disease and diabetes. He says they need to be treated aggressively to help them lose weight because dropping pounds can make a big difference.

"Fatty liver disease is completely reversible," he says. "If you lose a small amount of weight, you can markedly reduce the fat content in your liver. In fact, even two days of calorie restriction can cause a large reduction in liver fat and improvement in liver insulin sensitivity."

Fabbrini E, Magkos F, Mohammed S, Pietka T, Abumrad NA, Patterson BW, Okunade A, Klein S. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. PNAS Early Edition (2009), published online Aug. 24, 2009. www.pnas.org/cgi/doi/10.1073/pnas.0904944106

(related papers)

Deivanayagam S, Mohammed BS, Vitola BE, Naguib GH, Keshen TH, Kirk EP, Klein S. Nonalcoholic fatty liver disease is associated with hepatic and skeletal muscle insulin resistance in overweight adolescents. American Journal of Clinical Nutrition, 88(2) pp. 257-262, Aug. 2008.

Korenblat K, Fabbrini E, Mohammed BS, Klein S. Liver, muscle and adipose tissue insulin resistance is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134: 1369-1375, 2008.

Kirk E, Reeds DN, Finck BN, Mayurranjan MS, Klein S. Effects of acute and chronic calorie restriction on insulin action in obese men and women. Gastroenterology 136: 1552-1560, 2009.

This research was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases and the National Center for Research Resources of the National Institutes of Health.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>