Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat grafting helps patients with scarring problems, reports

26.09.2013
Technique using patient's own fat improves appearance and function in patients with difficult-to-treat scars

Millions of people with scars suffer from pain, discomfort, and inability to perform regular activities. Some may have to revert to addicting pain medicine to get rid of their ailments. Now, and with a new methodology, such problems can be treated successfully.

A technique using injection of the patient's own fat cells is an effective treatment for hard, contracted scars resulting from burns or other causes, reports a study in the September issue of The Journal of Craniofacial Surgery, edited by Mutaz B. Habal, MD, FRCSC, and published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.

Dr. Marco Klinger and coauthors of Università degli Studi di Milano report good results with fat grafting in hundreds of patients with difficult-to-treat scars causing pain and limited motion. "For scar treatment, where medical and surgical therapies seem to be ineffective especially in the long term, autologous fat graft has proven to be a new chance to repair tissue damage," the researchers write.

Fat Grafting Shows Promise as Treatment for Scars

Dr. Klinger and colleagues used autologous fat grafting to treat persistent scarring problems in nearly 700 patients over six years. ("Autologous" means using the patient's own tissues.) All patients had abnormal, painful scars causing hardening or tightening of the skin, often with limitation of motion. The scars—resulting from burns, surgery, or other causes—had not improved with other treatments.

The fat grafting procedure began with liposuction to collect a small amount of the patient's own fat tissue—usually from the abdomen or hips. After processing, surgeons reinjected the fat cells under the skin in the area of scarring. Fat was distributed in different directions, with the goal of creating a "web" of support for scarred, damaged skin.

Fat grafting led to significant improvement "both from an aesthetic and functional point of view," according to Dr. Klinger and coauthors. The skin in the scarred area became "softer and more flexible and extensible, and very often color seem[ed] similar to the surrounding unharmed skin."

After fat grafting, the patients had decreased pain and increased scar elasticity. Improvement began within two weeks, continued through three months, and persisted through one year and beyond. In a subgroup of patients, objective testing of skin hardness and clinical ratings by doctors and patients provided further evidence of treatment benefits.

Fat Cells Lead to Improved Function as Well as Appearance

Treatment was associated with improved motion in areas where movement was limited because of tightness and stiffness of contracted scars. For example, in patients with scarring after burns to the face, fat grafting led to improved facial motion.

Fat grafting helped solve other difficult surgical problems as well. In one case, a breast cancer patient was left with hard, painful scars after complications from breast reconstruction. Treatment with fat grafting allowed a successful second breast reconstruction to be performed.

In recent years, there has been renewed interest in techniques using the patient's own fat for reconstructive and cosmetic plastic surgery. The new experience suggests that fat grafting may provide an effective new "regenerative medicine" technique for patients with difficult-to-treat scars.

It's not yet clear exactly how fat grafting exerts its benefits in scarred tissues. One factor may be the fact that fat tissue includes stem cells, which can develop into many different types of cells active in the wound healing and tissue repair process.

Dr. Klinger and coauthors believe their experience shows fat grafting is a "promising and effective therapeutic approach" to scars from various causes—not only burns and other forms of trauma but also after surgery or radiation therapy. "[T]reated areas regain characteristics similar to normal skin," leading not only to improved appearance but also improved function in patients with problematic scars that don't respond to other treatments.

About The Journal of Craniofacial Surgery

The Journal of Craniofacial Surgery serves as a forum of communication for all those involved in craniofacial and maxillofacial surgery. Coverage ranges from practical aspects of craniofacial surgery to the basic science that underlies surgical practice. Affiliates include 14 major specialty societies around the world, including the American Association of Pediatric Plastic Surgeons, the American Academy of Pediatrics Section of Pediatric Plastic Surgery, the American Society of Craniofacial Surgeons, the American Society of Maxillofacial Surgeons, the Argentine Society of Plastic Surgery Section of Pediatric Plastic Surgery, the Asian Pacific Craniofacial Association, the Association of Military Plastic Surgeons of the U.S., the Brazilian Society of Craniofacial Surgeons, the European Society of Craniofacial Surgery, the International Society of Craniofacial Surgery, the Japanese Society of Craniofacial Surgery, the Korean Society of Craniofacial Surgery, the Thai Cleft and Craniofacial Association, and the World Craniofacial Foundation.

About Wolters Kluwer Health

Wolters Kluwer Health is a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Serving more than 150 countries and territories worldwide, Wolters Kluwer Health's customers include professionals, institutions and students in medicine, nursing, allied health and pharmacy. Major brands include Health Language®, Lexicomp®, Lippincott Williams & Wilkins, Medicom®, Medknow, Ovid®, Pharmacy OneSource®, ProVation® Medical, and UpToDate®.

Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company. Wolters Kluwer had 2012 annual revenues of €3.6 billion ($4.6 billion), employs approximately 19,000 people worldwide, and maintains operations in over 40 countries across Europe, North America, Asia Pacific, and Latin America. Follow our official Twitter handle: @WKHealth.

Connie Hughes | EurekAlert!
Further information:
http://www.wolterskluwer.com

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>