Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast synthesis could boost drug development

19.03.2014

Small protein fragments, also called peptides, are promising as drugs because they can be designed for very specific functions inside living cells. Insulin and the HIV drug Fuzeon are some of the earliest successful examples, and peptide drugs are expected to become a $25 billion market by 2018.

However, a major bottleneck has prevented peptide drugs from reaching their full potential: Manufacturing the peptides takes several weeks, making it difficult to obtain large quantities, and to rapidly test their effectiveness.

That bottleneck may soon disappear: A team of MIT chemists and chemical engineers has designed a way to manufacture peptides in mere hours. The new system, described in the March 21st issue of journal ChemBioChem, could have a major impact on peptide drug development, says Bradley Pentelute, an assistant professor of chemistry and leader of the research team.

"Peptides are ubiquitous. They're used in therapeutics, they're found in hydrogels, and they're used to control drug delivery. They're also used as biological probes to image cancer and to study processes inside cells," Pentelute says. "Because you can get these really fast now, you can start to do things you couldn't do before."

The lead author of the paper is Mark Simon, a graduate student in Pentelute's lab. Other authors include Klavs Jensen, head of MIT's Department of Chemical Engineering, and Andrea Adamo, a research associate in chemical engineering.

Accelerated manufacturing

Therapeutic peptides usually consist of a chain of 30 to 40 amino acids, the building blocks of proteins. Many universities, including MIT, have facilities to manufacture these peptides, but the process usually takes two to six weeks, using machines developed about 20 years ago.

These machines require about an hour to perform the chemical reactions needed to add one amino acid to a chain. To speed up the process, the MIT team adapted the synthesis reactions so they can be done in a continuous flow system. Using this approach, each amino acid addition takes only a few minutes, and an entire peptide can be assembled in little more than an hour.

In future versions, "we think we're going to be able to do each step in under 30 seconds," says Pentelute, who is also an associate member of the Broad Institute. "What that means is you're really going to be able to do anything you want in short periods of time."

The new system has storage vessels for each of the 20 naturally occurring amino acids, connected to pumps that pull out the correct one. As the amino acids flow toward the chamber where the reaction takes place, they travel through a coil where they are preheated to 60 degrees Celsius, which helps speed up the synthesis reaction.

This system produces peptides as pure as those produced with existing machines. "We're on par with the world's best state-of-the-art synthesis, but we can do it much faster now," Pentelute says.

With this technology, scientists could design and rapidly test new peptides to treat cancer and other diseases, as well as more effective variants of existing peptides, such as insulin, Pentelute says. Another benefit of this high-speed approach is that any potential problems with a particular peptide synthesis can be detected much sooner, allowing the researchers to try to fix it right away.

Another area Pentelute plans to pursue is creating so-called "mirror-image" proteins. Nearly all proteins that exist in nature are made of L amino acids, whose structures have a right-handed orientation. Creating and studying peptides that are mirror images of these natural proteins could pave the way to developing such peptides as new drugs with completely different functions from the right-handed versions.

Technology with an impact

In a separate paper published in the same issue of ChemBioChem, the researchers demonstrated that they could use this technology not only to synthesize peptides, but also combine these to form large synthetic proteins. To demonstrate the technology, they created an antibody mimic that has 130 amino acids, as well as a 113-amino-acid enzyme produced by bacteria. Chemistry graduate students Surin Mong and Alexander Vinogradov are lead authors of that paper, along with Simon.

The researchers have patented the technology, and MIT's Deshpande Center for Technological Innovation has given them a grant to help commercialize it. Pentelute says he believes that about 10 machines using the new technology would be enough to meet current demand, which is about 100,000 to 500,000 custom peptides per year.

Pentelute envisions that the technology could have an impact on synthetic biology comparable to rapid synthesis of short strands of DNA and RNA. These strands, known as oligonucleotides, take only a day or two to prepare and can be used to create custom genes to give cells new functions.

"That's what our aim is — to have next-day or two-day delivery of these peptide units, to anyone in the world. That's really the dream," he says.

###

The research was funded by the MIT Reed Fund, the Deshpande Center, a Damon-Runyon-Rachleff Innovation Award, a Sontag Foundation Distinguished Scientist Award, a C.P. Chu and Y. Lai Fellowship, an AstraZeneca Distinguished Graduate Student Fellowship, the National Institute of General Medical Sciences, and the National Institutes of Health.

Written by Anne Trafton, MIT News Office

Sarah McDonnell | EurekAlert!

Further reports about: ChemBioChem MIT acid acids drugs manufacture peptides proteins synthesis synthetic

More articles from Health and Medicine:

nachricht Mass. General team generates therapeutic nitric oxide from air with an electric spark
07.07.2015 | Massachusetts General Hospital

nachricht UNC researchers find 2 biomarkers linked to severe heart disease
07.07.2015 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Surfing a wake of light

Researchers observe and control light wakes for the first time

When a duck paddles across a pond or a supersonic plane flies through the sky, it leaves a wake in its path. Wakes occur whenever something is traveling...

Im Focus: Light-induced Magnetic Waves in Materials Engineered at the Atomic Scale

Researchers explore ultrafast control of magnetism across interfaces: A new study discovers how the sudden excitation of lattice vibrations in a crystal can trigger a change of the magnetic properties of an atomically-thin layer that lies on its surface.

A research team, led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg, the University of Oxford, and the...

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Down to the quantum dot

07.07.2015 | Physics and Astronomy

Tundra study uncovers impact of climate warming in the Arctic

07.07.2015 | Earth Sciences

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover

07.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>