Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fascinating rhythm: The brain's 'slow waves'

18.04.2013
Scientists probe the source of a pulsing signal in the sleeping brain

New findings clarify where and how the brain's "slow waves" originate. These rhythmic signal pulses, which sweep through the brain during deep sleep at the rate of about one cycle per second, are assumed to play a role in processes such as consolidation of memory.

For the first time, researchers have shown conclusively that slow waves start in the cerebral cortex, the part of the brain responsible for cognitive functions. They also found that such a wave can be set in motion by a tiny cluster of neurons.

"The brain is a rhythm machine, producing all kinds of rhythms all the time," says Prof. Arthur Konnerth of the Technische Universitaet Muenchen (TUM). "These are clocks that help to keep many parts of the brain on the same page." One such timekeeper produces the so-called slow waves of deep sleep, which are thought to be involved in transmuting fragments of a day's experience and learning into lasting memory. They can be observed in very early stages of development, and they may be disrupted in diseases such as Alzheimer's.

Previous studies, relying mainly on electrical measurements, have lacked the spatial resolution to map the initiation and propagation of slow waves precisely. But using light, Konnerth's Munich-based team – in collaboration with researchers at Stanford and the University of Mainz – could both stimulate slow waves and observe them in unprecedented detail. One key result confirmed that the slow waves originate only in the cortex, ruling out other long-standing hypotheses. "The second major finding," Konnerth says, "was that out of the billions of cells in the brain, it takes not more than a local cluster of fifty to one hundred neurons in a deep layer of the cortex, called layer 5, to make a wave that extends over the entire brain."

New light on a fundamental neural mechanism

Despite considerable investigation of the brain's slow waves, definitive answers about the underlying circuit mechanism have remained elusive. Where is the pacemaker for this rhythm? Where do the waves start, and where do they stop? This study – based on optical probing of intact brains of live mice under anesthesia – now provides the basis for a detailed, comprehensive view.

"We implemented an optogenetic approach combined with optical detection of neuronal activity to explore causal features of these slow oscillations, or Up-Down state transitions, that represent the dominating network rhythm in sleep," explains Prof. Albrecht Stroh of the Johannes Gutenberg University Mainz. Optogenetics is a novel technique that enabled the researchers to insert light-sensitive channels into specific kinds of neurons, to make them responsive to light stimulation. This allowed for selective and spatially defined stimulation of small numbers of cortical and thalamic neurons.

Access to the brain via optical fibers allowed for both microscopic recording and direct stimulation of neurons. Flashes of light near the mouse's eyes were also used to stimulate neurons in the visual cortex. By recording the flux of calcium ions, a chemical signal that can serve as a more spatially precise readout of the electric activity, the researchers made the slow waves visible. They also correlated optical recordings with more conventional electrical measurements. As a result, it was possible to watch individual wave fronts spread – like ripples from a rock thrown into a quiet lake – first through the cortex and then through other brain structures.

A new picture begins to emerge: Not only is it possible for a tiny local cluster of neurons to initiate a slow wave that will spread far and wide, recruiting multiple regions of the brain into a single event – this appears to be typical. "In spontaneous conditions," Konnerth says, "as it happens with you and me and everyone else every night in deep sleep, every part of the cortex can be an initiation site." Furthermore, a surprisingly simple communication protocol can be seen in the slow wave rhythm. During each one-second cycle a single neuron cluster sends its signal and all others are silenced, as if they are taking turns bathing the brain in fragments of experience or learning, building blocks of memory. The researchers view these findings as a step toward a better understanding of learning and memory formation, a topic Konnerth's group is investigating with funding from the European Research Council. They also are testing how the slow waves behave during disease.

This research was supported by the German Research Foundation (DFG) through IRTG 1373, the TUM Institute for Advanced Study, and the Excellence Cluster SyNergy (Munich Cluster for Systems Neurology); the Friedrich Schiedel Foundation; and the European Commission (Project Corticonic, under the 7th Framework Program).

Publication:

Making Waves: Initiation and Propagation of Corticothalamic Ca2+ Waves In Vivo Albrecht Stroh, Helmuth Adelsberger, Alexander Groh, Charlotta Ruehlmann, Sebastian Fischer, Anja Schierloh, Karl Deisseroth, and Arthur Konnerth.

Neuron 77, 1136-1150, March 20, 2013,
DOI: http://dx.doi.org/10.1016/j.neuron.2013.01.031
Contact:
Prof. Arthur Konnerth
Institute of Neuroscience
Technische Universitaet Muenchen
T: +49 (0)89 4140 3351
E: arthur.konnerth@lrz.tu-muenchen.de
W: http://www.ifn.me.tum.de/new/
Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 500 professors, 9,000 academic and non-academic staff, and 32,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Excellence University" in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). In both international and national rankings, TUM is rated as one of Germany's top universities and is dedicated to the ideal of a top-level research-oriented entrepreneurial university. The university's global presence includes offices in Beijing (China), Brussels (Belgium), Cairo (Egypt), Mumbai (India) and São Paulo (Brazil). The German Institute of Science and Technology (GIST - TUM Asia), founded in 2002 in Singapore, is the first research campus of a German university abroad.

Patrick Regan | EurekAlert!
Further information:
http://www.tum.de

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>