Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fascinating rhythm: The brain's 'slow waves'

18.04.2013
Scientists probe the source of a pulsing signal in the sleeping brain

New findings clarify where and how the brain's "slow waves" originate. These rhythmic signal pulses, which sweep through the brain during deep sleep at the rate of about one cycle per second, are assumed to play a role in processes such as consolidation of memory.

For the first time, researchers have shown conclusively that slow waves start in the cerebral cortex, the part of the brain responsible for cognitive functions. They also found that such a wave can be set in motion by a tiny cluster of neurons.

"The brain is a rhythm machine, producing all kinds of rhythms all the time," says Prof. Arthur Konnerth of the Technische Universitaet Muenchen (TUM). "These are clocks that help to keep many parts of the brain on the same page." One such timekeeper produces the so-called slow waves of deep sleep, which are thought to be involved in transmuting fragments of a day's experience and learning into lasting memory. They can be observed in very early stages of development, and they may be disrupted in diseases such as Alzheimer's.

Previous studies, relying mainly on electrical measurements, have lacked the spatial resolution to map the initiation and propagation of slow waves precisely. But using light, Konnerth's Munich-based team – in collaboration with researchers at Stanford and the University of Mainz – could both stimulate slow waves and observe them in unprecedented detail. One key result confirmed that the slow waves originate only in the cortex, ruling out other long-standing hypotheses. "The second major finding," Konnerth says, "was that out of the billions of cells in the brain, it takes not more than a local cluster of fifty to one hundred neurons in a deep layer of the cortex, called layer 5, to make a wave that extends over the entire brain."

New light on a fundamental neural mechanism

Despite considerable investigation of the brain's slow waves, definitive answers about the underlying circuit mechanism have remained elusive. Where is the pacemaker for this rhythm? Where do the waves start, and where do they stop? This study – based on optical probing of intact brains of live mice under anesthesia – now provides the basis for a detailed, comprehensive view.

"We implemented an optogenetic approach combined with optical detection of neuronal activity to explore causal features of these slow oscillations, or Up-Down state transitions, that represent the dominating network rhythm in sleep," explains Prof. Albrecht Stroh of the Johannes Gutenberg University Mainz. Optogenetics is a novel technique that enabled the researchers to insert light-sensitive channels into specific kinds of neurons, to make them responsive to light stimulation. This allowed for selective and spatially defined stimulation of small numbers of cortical and thalamic neurons.

Access to the brain via optical fibers allowed for both microscopic recording and direct stimulation of neurons. Flashes of light near the mouse's eyes were also used to stimulate neurons in the visual cortex. By recording the flux of calcium ions, a chemical signal that can serve as a more spatially precise readout of the electric activity, the researchers made the slow waves visible. They also correlated optical recordings with more conventional electrical measurements. As a result, it was possible to watch individual wave fronts spread – like ripples from a rock thrown into a quiet lake – first through the cortex and then through other brain structures.

A new picture begins to emerge: Not only is it possible for a tiny local cluster of neurons to initiate a slow wave that will spread far and wide, recruiting multiple regions of the brain into a single event – this appears to be typical. "In spontaneous conditions," Konnerth says, "as it happens with you and me and everyone else every night in deep sleep, every part of the cortex can be an initiation site." Furthermore, a surprisingly simple communication protocol can be seen in the slow wave rhythm. During each one-second cycle a single neuron cluster sends its signal and all others are silenced, as if they are taking turns bathing the brain in fragments of experience or learning, building blocks of memory. The researchers view these findings as a step toward a better understanding of learning and memory formation, a topic Konnerth's group is investigating with funding from the European Research Council. They also are testing how the slow waves behave during disease.

This research was supported by the German Research Foundation (DFG) through IRTG 1373, the TUM Institute for Advanced Study, and the Excellence Cluster SyNergy (Munich Cluster for Systems Neurology); the Friedrich Schiedel Foundation; and the European Commission (Project Corticonic, under the 7th Framework Program).

Publication:

Making Waves: Initiation and Propagation of Corticothalamic Ca2+ Waves In Vivo Albrecht Stroh, Helmuth Adelsberger, Alexander Groh, Charlotta Ruehlmann, Sebastian Fischer, Anja Schierloh, Karl Deisseroth, and Arthur Konnerth.

Neuron 77, 1136-1150, March 20, 2013,
DOI: http://dx.doi.org/10.1016/j.neuron.2013.01.031
Contact:
Prof. Arthur Konnerth
Institute of Neuroscience
Technische Universitaet Muenchen
T: +49 (0)89 4140 3351
E: arthur.konnerth@lrz.tu-muenchen.de
W: http://www.ifn.me.tum.de/new/
Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 500 professors, 9,000 academic and non-academic staff, and 32,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Excellence University" in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). In both international and national rankings, TUM is rated as one of Germany's top universities and is dedicated to the ideal of a top-level research-oriented entrepreneurial university. The university's global presence includes offices in Beijing (China), Brussels (Belgium), Cairo (Egypt), Mumbai (India) and São Paulo (Brazil). The German Institute of Science and Technology (GIST - TUM Asia), founded in 2002 in Singapore, is the first research campus of a German university abroad.

Patrick Regan | EurekAlert!
Further information:
http://www.tum.de

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>