Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fascinating rhythm: The brain's 'slow waves'

18.04.2013
Scientists probe the source of a pulsing signal in the sleeping brain

New findings clarify where and how the brain's "slow waves" originate. These rhythmic signal pulses, which sweep through the brain during deep sleep at the rate of about one cycle per second, are assumed to play a role in processes such as consolidation of memory.

For the first time, researchers have shown conclusively that slow waves start in the cerebral cortex, the part of the brain responsible for cognitive functions. They also found that such a wave can be set in motion by a tiny cluster of neurons.

"The brain is a rhythm machine, producing all kinds of rhythms all the time," says Prof. Arthur Konnerth of the Technische Universitaet Muenchen (TUM). "These are clocks that help to keep many parts of the brain on the same page." One such timekeeper produces the so-called slow waves of deep sleep, which are thought to be involved in transmuting fragments of a day's experience and learning into lasting memory. They can be observed in very early stages of development, and they may be disrupted in diseases such as Alzheimer's.

Previous studies, relying mainly on electrical measurements, have lacked the spatial resolution to map the initiation and propagation of slow waves precisely. But using light, Konnerth's Munich-based team – in collaboration with researchers at Stanford and the University of Mainz – could both stimulate slow waves and observe them in unprecedented detail. One key result confirmed that the slow waves originate only in the cortex, ruling out other long-standing hypotheses. "The second major finding," Konnerth says, "was that out of the billions of cells in the brain, it takes not more than a local cluster of fifty to one hundred neurons in a deep layer of the cortex, called layer 5, to make a wave that extends over the entire brain."

New light on a fundamental neural mechanism

Despite considerable investigation of the brain's slow waves, definitive answers about the underlying circuit mechanism have remained elusive. Where is the pacemaker for this rhythm? Where do the waves start, and where do they stop? This study – based on optical probing of intact brains of live mice under anesthesia – now provides the basis for a detailed, comprehensive view.

"We implemented an optogenetic approach combined with optical detection of neuronal activity to explore causal features of these slow oscillations, or Up-Down state transitions, that represent the dominating network rhythm in sleep," explains Prof. Albrecht Stroh of the Johannes Gutenberg University Mainz. Optogenetics is a novel technique that enabled the researchers to insert light-sensitive channels into specific kinds of neurons, to make them responsive to light stimulation. This allowed for selective and spatially defined stimulation of small numbers of cortical and thalamic neurons.

Access to the brain via optical fibers allowed for both microscopic recording and direct stimulation of neurons. Flashes of light near the mouse's eyes were also used to stimulate neurons in the visual cortex. By recording the flux of calcium ions, a chemical signal that can serve as a more spatially precise readout of the electric activity, the researchers made the slow waves visible. They also correlated optical recordings with more conventional electrical measurements. As a result, it was possible to watch individual wave fronts spread – like ripples from a rock thrown into a quiet lake – first through the cortex and then through other brain structures.

A new picture begins to emerge: Not only is it possible for a tiny local cluster of neurons to initiate a slow wave that will spread far and wide, recruiting multiple regions of the brain into a single event – this appears to be typical. "In spontaneous conditions," Konnerth says, "as it happens with you and me and everyone else every night in deep sleep, every part of the cortex can be an initiation site." Furthermore, a surprisingly simple communication protocol can be seen in the slow wave rhythm. During each one-second cycle a single neuron cluster sends its signal and all others are silenced, as if they are taking turns bathing the brain in fragments of experience or learning, building blocks of memory. The researchers view these findings as a step toward a better understanding of learning and memory formation, a topic Konnerth's group is investigating with funding from the European Research Council. They also are testing how the slow waves behave during disease.

This research was supported by the German Research Foundation (DFG) through IRTG 1373, the TUM Institute for Advanced Study, and the Excellence Cluster SyNergy (Munich Cluster for Systems Neurology); the Friedrich Schiedel Foundation; and the European Commission (Project Corticonic, under the 7th Framework Program).

Publication:

Making Waves: Initiation and Propagation of Corticothalamic Ca2+ Waves In Vivo Albrecht Stroh, Helmuth Adelsberger, Alexander Groh, Charlotta Ruehlmann, Sebastian Fischer, Anja Schierloh, Karl Deisseroth, and Arthur Konnerth.

Neuron 77, 1136-1150, March 20, 2013,
DOI: http://dx.doi.org/10.1016/j.neuron.2013.01.031
Contact:
Prof. Arthur Konnerth
Institute of Neuroscience
Technische Universitaet Muenchen
T: +49 (0)89 4140 3351
E: arthur.konnerth@lrz.tu-muenchen.de
W: http://www.ifn.me.tum.de/new/
Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 500 professors, 9,000 academic and non-academic staff, and 32,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Excellence University" in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). In both international and national rankings, TUM is rated as one of Germany's top universities and is dedicated to the ideal of a top-level research-oriented entrepreneurial university. The university's global presence includes offices in Beijing (China), Brussels (Belgium), Cairo (Egypt), Mumbai (India) and São Paulo (Brazil). The German Institute of Science and Technology (GIST - TUM Asia), founded in 2002 in Singapore, is the first research campus of a German university abroad.

Patrick Regan | EurekAlert!
Further information:
http://www.tum.de

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>