Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fair sanctions are orchestrated in the brain

06.10.2011
Scientists from the universities of Zurich and Basel reveal that two frontal regions of the brain need to interact with one another when people punish unfair partners at their own expense. Neuroscientists Thomas Baumgartner and Daria Knoch and economist Ernst Fehr combined a brain stimulation method with a method for measuring brain activity in order to explore this neuronal network. The new findings could also be significant for therapeutic use in psychiatric and forensic patients.

Civilized human cohabitation requires us to respect elementary social norms. We guarantee compliance with these norms with our willingness to punish norm violations – often even at our own expense. This behavior goes against our own economic self-interest and requires us to control our egoistic impulses.

Innovative combination of methods
In collaboration with Professor Ernst Fehr, Dr. Thomas Baumgartner and Professor Daria Knoch reveal the neuronal networks behind self-control in an article recently published in «Nature Neuroscience». For the purposes of their study, they combined the transcranial magnetic stimulation (TMS) method with functional magnetic resonance imaging (fMRI).
Interaction between two frontal brain regions
The results of the study show that people only punish norm violations at their own expense if the dorsolateral prefrontal cortex – an important area for control located at the front of the brain – is activated. This control entity must also interact with another frontal region, the ventromedial prefrontal cortex, for punishment to occur.

The communication between these two frontal regions of the brain is also interesting in light of earlier fMRI studies, which showed that the ventromedial prefrontal cortex encodes the subjective value of consumer goods and normative behavior. As neuroscientist Thomas Baumgartner explains, it seems plausible that this brain region might also encode the subjective value of a sanction. This value increases through the communication with the dorsolateral prefrontal cortex. «Using brain stimulation, we were able to demonstrate that the communication between the two brain regions becomes more difficult if the activity in the dorsolateral prefrontal cortex is reduced. This in turn makes punishing norm violations at your own expense significantly more difficult.»

Therapeutic benefits
The results could be important in the therapeutic use of the non-invasive brain-stimulation method in psychiatric and forensic patients. Patients who exhibit strong anti-social behavior also frequently display reduced activity in the ventromedial prefrontal cortex. This region of the brain, however, is not directly accessible for non-invasive brain stimulation, as its location is too deep inside the brain. The results of the current study suggest that the activity in this region of the brain could be increased if the activity in the dorsolateral prefrontal cortex were increased with the aid of brain stimulation. «This indirectly induced increase in the activity of the frontal brain regions could help improve prosocial and fair behavior in these patients,» concludes Daria Knoch.
Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI)

TMS reduces the excitability of an area of the brain temporarily and painlessly. The researchers used this short-term impairment of an area of the brain to examine subjects' behavior when they had to decide whether to punish a partner’s unfair behavior in a negotiation experiment. TMS enables causal conclusions as to whether a particular area of the brain plays a decisive role in behavior, including whether sanctions will occur. Brain areas often work in a network, however, and rarely in isolation during such a complex process. While fMRI can be used to measure the activity of these networks, the method does not allow any causal conclusions to be drawn. Only a combination of the two methods thus permits the determination of the neuronal networks that play a causal role in sanctioning at one’s own expense.

Literature:
Thomas Baumgartner, Daria Knoch, Philine Hotz, Christoph Eisenegger und Ernst Fehr: Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice, in: Nature Neuroscience, 2 October 2011, DOI: 10.1038/nn.2933
Contacts:
Dr. Thomas Baumgartner
Department of Psychology
Social and Affective Neuroscience
University of Basel
Tel.: +41 61 267 02 88
Email: t.baumgartner@unibas.ch
Professor Daria Knoch
Department of Psychology
Social and Affective Neuroscience
University of Basel
Tel.: +41 61 267 02 18
Email: daria.knoch@unibas.ch
Professor Ernst Fehr
Department of Economics
Laboratory for Social and Neural Systems Research
University of Zurich
Tel.: +41 44 634 37 01
Email: ernst.fehr@econ.uzh.ch
Beat Müller
Media Relations
University of Zurich
Tel.: +41 44 634 44 32
Email: beat.mueller@kommunikation.uzh.ch

Nathalie Huber | idw
Further information:
http://www.uzh.ch

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>