Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fair sanctions are orchestrated in the brain

06.10.2011
Scientists from the universities of Zurich and Basel reveal that two frontal regions of the brain need to interact with one another when people punish unfair partners at their own expense. Neuroscientists Thomas Baumgartner and Daria Knoch and economist Ernst Fehr combined a brain stimulation method with a method for measuring brain activity in order to explore this neuronal network. The new findings could also be significant for therapeutic use in psychiatric and forensic patients.

Civilized human cohabitation requires us to respect elementary social norms. We guarantee compliance with these norms with our willingness to punish norm violations – often even at our own expense. This behavior goes against our own economic self-interest and requires us to control our egoistic impulses.

Innovative combination of methods
In collaboration with Professor Ernst Fehr, Dr. Thomas Baumgartner and Professor Daria Knoch reveal the neuronal networks behind self-control in an article recently published in «Nature Neuroscience». For the purposes of their study, they combined the transcranial magnetic stimulation (TMS) method with functional magnetic resonance imaging (fMRI).
Interaction between two frontal brain regions
The results of the study show that people only punish norm violations at their own expense if the dorsolateral prefrontal cortex – an important area for control located at the front of the brain – is activated. This control entity must also interact with another frontal region, the ventromedial prefrontal cortex, for punishment to occur.

The communication between these two frontal regions of the brain is also interesting in light of earlier fMRI studies, which showed that the ventromedial prefrontal cortex encodes the subjective value of consumer goods and normative behavior. As neuroscientist Thomas Baumgartner explains, it seems plausible that this brain region might also encode the subjective value of a sanction. This value increases through the communication with the dorsolateral prefrontal cortex. «Using brain stimulation, we were able to demonstrate that the communication between the two brain regions becomes more difficult if the activity in the dorsolateral prefrontal cortex is reduced. This in turn makes punishing norm violations at your own expense significantly more difficult.»

Therapeutic benefits
The results could be important in the therapeutic use of the non-invasive brain-stimulation method in psychiatric and forensic patients. Patients who exhibit strong anti-social behavior also frequently display reduced activity in the ventromedial prefrontal cortex. This region of the brain, however, is not directly accessible for non-invasive brain stimulation, as its location is too deep inside the brain. The results of the current study suggest that the activity in this region of the brain could be increased if the activity in the dorsolateral prefrontal cortex were increased with the aid of brain stimulation. «This indirectly induced increase in the activity of the frontal brain regions could help improve prosocial and fair behavior in these patients,» concludes Daria Knoch.
Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI)

TMS reduces the excitability of an area of the brain temporarily and painlessly. The researchers used this short-term impairment of an area of the brain to examine subjects' behavior when they had to decide whether to punish a partner’s unfair behavior in a negotiation experiment. TMS enables causal conclusions as to whether a particular area of the brain plays a decisive role in behavior, including whether sanctions will occur. Brain areas often work in a network, however, and rarely in isolation during such a complex process. While fMRI can be used to measure the activity of these networks, the method does not allow any causal conclusions to be drawn. Only a combination of the two methods thus permits the determination of the neuronal networks that play a causal role in sanctioning at one’s own expense.

Literature:
Thomas Baumgartner, Daria Knoch, Philine Hotz, Christoph Eisenegger und Ernst Fehr: Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice, in: Nature Neuroscience, 2 October 2011, DOI: 10.1038/nn.2933
Contacts:
Dr. Thomas Baumgartner
Department of Psychology
Social and Affective Neuroscience
University of Basel
Tel.: +41 61 267 02 88
Email: t.baumgartner@unibas.ch
Professor Daria Knoch
Department of Psychology
Social and Affective Neuroscience
University of Basel
Tel.: +41 61 267 02 18
Email: daria.knoch@unibas.ch
Professor Ernst Fehr
Department of Economics
Laboratory for Social and Neural Systems Research
University of Zurich
Tel.: +41 44 634 37 01
Email: ernst.fehr@econ.uzh.ch
Beat Müller
Media Relations
University of Zurich
Tel.: +41 44 634 44 32
Email: beat.mueller@kommunikation.uzh.ch

Nathalie Huber | idw
Further information:
http://www.uzh.ch

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>