Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fair sanctions are orchestrated in the brain

06.10.2011
Scientists from the universities of Zurich and Basel reveal that two frontal regions of the brain need to interact with one another when people punish unfair partners at their own expense. Neuroscientists Thomas Baumgartner and Daria Knoch and economist Ernst Fehr combined a brain stimulation method with a method for measuring brain activity in order to explore this neuronal network. The new findings could also be significant for therapeutic use in psychiatric and forensic patients.

Civilized human cohabitation requires us to respect elementary social norms. We guarantee compliance with these norms with our willingness to punish norm violations – often even at our own expense. This behavior goes against our own economic self-interest and requires us to control our egoistic impulses.

Innovative combination of methods
In collaboration with Professor Ernst Fehr, Dr. Thomas Baumgartner and Professor Daria Knoch reveal the neuronal networks behind self-control in an article recently published in «Nature Neuroscience». For the purposes of their study, they combined the transcranial magnetic stimulation (TMS) method with functional magnetic resonance imaging (fMRI).
Interaction between two frontal brain regions
The results of the study show that people only punish norm violations at their own expense if the dorsolateral prefrontal cortex – an important area for control located at the front of the brain – is activated. This control entity must also interact with another frontal region, the ventromedial prefrontal cortex, for punishment to occur.

The communication between these two frontal regions of the brain is also interesting in light of earlier fMRI studies, which showed that the ventromedial prefrontal cortex encodes the subjective value of consumer goods and normative behavior. As neuroscientist Thomas Baumgartner explains, it seems plausible that this brain region might also encode the subjective value of a sanction. This value increases through the communication with the dorsolateral prefrontal cortex. «Using brain stimulation, we were able to demonstrate that the communication between the two brain regions becomes more difficult if the activity in the dorsolateral prefrontal cortex is reduced. This in turn makes punishing norm violations at your own expense significantly more difficult.»

Therapeutic benefits
The results could be important in the therapeutic use of the non-invasive brain-stimulation method in psychiatric and forensic patients. Patients who exhibit strong anti-social behavior also frequently display reduced activity in the ventromedial prefrontal cortex. This region of the brain, however, is not directly accessible for non-invasive brain stimulation, as its location is too deep inside the brain. The results of the current study suggest that the activity in this region of the brain could be increased if the activity in the dorsolateral prefrontal cortex were increased with the aid of brain stimulation. «This indirectly induced increase in the activity of the frontal brain regions could help improve prosocial and fair behavior in these patients,» concludes Daria Knoch.
Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI)

TMS reduces the excitability of an area of the brain temporarily and painlessly. The researchers used this short-term impairment of an area of the brain to examine subjects' behavior when they had to decide whether to punish a partner’s unfair behavior in a negotiation experiment. TMS enables causal conclusions as to whether a particular area of the brain plays a decisive role in behavior, including whether sanctions will occur. Brain areas often work in a network, however, and rarely in isolation during such a complex process. While fMRI can be used to measure the activity of these networks, the method does not allow any causal conclusions to be drawn. Only a combination of the two methods thus permits the determination of the neuronal networks that play a causal role in sanctioning at one’s own expense.

Literature:
Thomas Baumgartner, Daria Knoch, Philine Hotz, Christoph Eisenegger und Ernst Fehr: Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice, in: Nature Neuroscience, 2 October 2011, DOI: 10.1038/nn.2933
Contacts:
Dr. Thomas Baumgartner
Department of Psychology
Social and Affective Neuroscience
University of Basel
Tel.: +41 61 267 02 88
Email: t.baumgartner@unibas.ch
Professor Daria Knoch
Department of Psychology
Social and Affective Neuroscience
University of Basel
Tel.: +41 61 267 02 18
Email: daria.knoch@unibas.ch
Professor Ernst Fehr
Department of Economics
Laboratory for Social and Neural Systems Research
University of Zurich
Tel.: +41 44 634 37 01
Email: ernst.fehr@econ.uzh.ch
Beat Müller
Media Relations
University of Zurich
Tel.: +41 44 634 44 32
Email: beat.mueller@kommunikation.uzh.ch

Nathalie Huber | idw
Further information:
http://www.uzh.ch

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>