Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Facelift complications eased with help of new 3-D imaging technique

28.01.2014
Millions of people each year remove wrinkles, soften creases and plump up their lips by injecting a gel-like material into their facial tissue. These cosmetic procedures are sometimes called “liquid facelifts” and are said to be minimally invasive.

It’s rare, but sometimes things go wrong. In a matter of minutes, patients’ skin can turn red or blotchy white and the injected area becomes painful. Vital blood supply to the face is restricted and if untreated, parts of the tissue will die. That scenario is irreversible and can leave deep scars.


Siavash Yousefi, U of Washington

This image shows a mouse ear after a successful cosmetic filler injection. The filler, in green, rests in the tissue without blocking the blood vessels and veins.

Physicians haven’t been able to pinpoint why this happens because until now it was difficult to see how the injected fluid, or filler, behaves in facial tissue.

New imaging technology from University of Washington engineers allows scientists to analyze what happens within the smallest blood vessels during an injection. This finding could be used to prevent accidents during procedures and help clinicians reverse the ill effects if an injection doesn’t go as planned.

“Filler-induced tissue death can be a really devastating complication for the patient and provider,” said Shu-Hong (Holly) Chang, a UW assistant professor of ophthalmology specializing in plastic and reconstructive surgery. “This noninvasive imaging technique provides far better detail than I’ve ever seen before and helped us figure out why this is happening.”

Using this technology, Chang and her team saw that complications arose when filler was inadvertently injected into the bloodstream rather than in the intended soft tissues of the face. The gel builds up in a vessel, blocking blood movement and oxygen exchange. The team tested this in the ears of mice, which offer a model of what can happen in the blood vessels of a human face, Chang said.

She presented the results in November at the annual meeting of the American Society of Ophthalmic Plastic and Reconstructive Surgery showing that filler injections into blood vessels are most likely the cause of tissue death and other complications associated with the cosmetic procedure.

Ruikang Wang, a UW professor of bioengineering, and his lab pioneered this fine-resolution imaging, called optical microangiography. It can turn out 3-D images of the body’s vascular network by shining a light onto the tissue without touching it or adding any fluorescent dyes.

“We can visualize how blood responds to the cosmetic filler gel, even looking at the responses of each individual vessel. No other technique can provide this level of scrutiny,” Wang said.

The optical imaging technique operates on the same concept as ultrasound, which leverages changes in sound to detect structures. This technique instead uses light to repeatedly scan tissue cross-sections, delineating unmoving pieces (surrounding tissues) from moving segments (blood cells in vessels). Researchers compare image frames and piece together the complex visual web.

This technology can see blood vessels as small as 5 microns in diameter. Capillaries, the smallest vessels in our bodies, are about 7 microns in diameter and a red blood cell is usually 3 to 5 microns wide.

“Our niche is imaging the microvascular system,” said team member Siavash Yousefi, a UW graduate student in bioengineering. Other applications of the technology include analyzing how wounds heal, tracking what happens during strokes and traumatic brain injuries, and imaging human eyes to study diseases such as glaucoma and macular degeneration.

Cosmetic filler procedures have surged worldwide in recent years, particularly in Europe and Asia. In 2012 in the U.S. about 2 million procedures were performed. Up to 800 patients reportedly suffered serious complications, including potentially permanent disfigurement.

During the procedure, a practitioner injects the gel-like solution, often a natural substance called hyaluronic acid, multiple times into a person’s face. Restriction of blood to the tissues, called ischemia, often doesn’t show up until later, when the patient develops pain and sees changes on the surface of the skin, meaning the tissue is dying.

Some practitioners suggest using massage and warm compresses to treat the area, while others tell patients to take aspirin, but the field doesn’t have a standard course of action for treating these complications, Chang said. She has been called in for several emergencies to treat other practitioners’ patients who show signs of a failed procedure. This can lead to tissue death and even blindness if the affected area is near the eyes.

With this new understanding, practitioners can try to reverse the effect of vascular blockage by injecting an enzyme that dissolves hyaluronic acid fillers. The research team is now testing all types of available cosmetic fillers to see if their results hold on each brand and evaluating new treatments for reversing procedure complications.

“Our lab is trying to develop novel and clinically useful biomedical imaging techniques for early diagnosis, treatment and management of human diseases. Using this technology to better understand facelift complications is a perfect example that fulfills this mission,” Wang said.

The research was funded in part by the organization Research to Prevent Blindness and a Latham Vision Research Innovation Award.

For more information, contact Yousefi at siavash@uw.edu or 541-602-9592; Chang at shuchang@uw.edu or 206-897-4611; and Wang at wangrk@uw.edu or 206-616-5025.

Michelle Ma | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht An ounce of prevention: Research advances on 'scourge' of transplant wards
28.08.2015 | University of Wisconsin-Madison

nachricht Hypoallergenic parks: Coming soon?
27.08.2015 | American Society of Agronomy

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>