Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing through the eyes of the colorblind

23.05.2011
Toyohashi Tech researcher receives coveted Japanese government award for the invention of unique color filter–glasses. Allowing those with normal color vision to experience colorblindness, the glasses enable understanding of problems arising for people with color vision deficiency.

Shigeki Nakauchi of Toyohashi University of Technology’s (Toyohashi Tech) Department of Computer Science and Engineering has been awarded the 2011 Award for Science and Technology (Development Category) by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for the ‘Development of a filter to understand what the world looks like to color deficient people for use in Color Universal Design (CUD).’

This prestigious award is given to individuals for innovative research that is of practical use in society and improves the everyday lives and socioeconomic conditions of people worldwide.

Five percent of Japanese men and 200 million people worldwide are colorblind—so called color vision deficiency—and have difficulty in distinguishing specific color combinations. In order that the colorblind and others with normal color vision do not confuse colors, there is an urgent need for CUD (color universal design). However, people with normal vision and who are not color blind do not have an intuitive understanding of the difficulties posed by colorblindness, a situation that presents a barrier to familiarizing and promoting the CUD concept.

In this the world’s first development, a filter that modifies the optical spectrum to reproduce colorblind characteristics was developed for commercial use in 2007 (http://www.variantor.com, see link below). Using this filter, which comes in both eye glasses and glass loupes, non–colorblind people can experience the perceptual color confusion experienced by the colorblind due to the lack of one type of cone photoreceptor out of the three that support color vision.

Through the experience of simulated but highly realistic color blindness, it is possible to find problematic color schemes in almost any situation using the filter as a CUD tool. Currently the filter is being widely used for color combination tests in industry and in public facilities for printing material, public signs, and textbooks, including those used at CUD enlightenment seminars.

Nakauchi’s invention makes a significant contribution to the familiarization and promotion of CUD by enabling all to experience the diversity of color vision, and to realize problematic color combinations.

Media contacts:

Ms. Junko Sugaya and Mr. Masashi Yamaguchi
International Affairs Division
TEL: (+81) 0532-44-2042
FAX: (+81)0532-44-6557
E-mail: ryugaku(at)office.tut.ac.jp
About Toyohashi University of Technology:
An introduction by Yoshiyuki Sakaki, President, Toyohashi University of Technology.

Founded in 1976, Toyohashi University of Technology, Japan, is a vibrant modern national institute with research activities reflecting the modern era of advanced electronics, engineering, and life sciences.

Toyohashi University of Technology is located at the heart of Toyohashi City, in eastern Aichi Prefecture, with a population of 380,000. The Pacific Ocean is only a short bicycle ride away from the campus, and with the spectacular sights of the surrounding mountains, Toyohashi has a mild climate, low cost of living and is within easy reach of Nagoya, Tokyo, Osaka, Kyoto and Kobe by Shinkansen.

Our University is distinct among national science and engineering-orientated universities in a number of ways. Notably, about 80% of our 2,200 students are from 5-year technical colleges, with the majority continuing onto graduate school.

We also have several unique educational programs. For example, our so-called 'spiral-up curriculum' was devised to address the individual needs of our undergraduate and graduate students as they progress in their studies.

Needless to say a fundamental understanding basic theories underlying science and engineering is important, but at Toyohashi Tech we also emphasize practical training--an important part of which consists of a two-month internship that we organize with companies both in Japan and overseas. Notably, many of our 250 faculty members are from industry, which enables us to maintain a close relationship with industry.

Approximately 10 percent of Toyohashi Tech students are from overseas, with the majority coming from Asia. This reflects the success of the University's overseas outreach programs, especially the International Center for Engineering Education Development (ICCEED) program set up in 2001 to promote international student exchange. In the ICCEED program we work closely with the Japanese government to support the development of education programs in Indonesia, Malaysia and Vietnam.

Some of our overseas-graduates from this program go on to work in local manufacturing companies like Toyota, Hitachi and Toshiba; well known and representative Japanese companies.

Our University has eight research centers focusing on areas including intelligent sensing, robotics, agrotechnology and photonic information storage. And, in spite of our relatively short history, Toyohashi Tech has been internationally recognized for the development of innovative and cutting-edge technology, and major contributions to industry. In particular, Toyohashi Tech researchers are widely acknowledged for their contributions to the field of electronics including sensor microchips and ultra-high capacity memory devices. Notably, this expertise was a critical factor behind the selection of Toyohashi Tech for one of the highly competitive Global Center of Excellence (G-COE) awards by MEXT.

With a view to enhancing our research infrastructure, in October 2010 we launched the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS). One of the major goals of this institute is to address global issues in the life sciences, environmental change, and aging societies. To achieve these goals this we have assembled a team of ambitious young researchers from diverse fields to collaborate on pioneering new frontiers in science such as brain/neuro-electronics.

As well as literally working alongside each other in the same new dedicated building, the researchers also collaborate with the well established research institutes at the University and use the facilities at the LSI fabrication facility connected to the new building, forming a huge, open-access research complex furnished with cutting-edge equipment.

Finally, I am a molecular biologist and based on my experience of participating in international research programs--such as the Human Genome Project--I am convinced that solutions to global problems will only be found by close collaboration between researchers from different fields, that is, interdisciplinary research. This belief was the inspiration for EIIRIS, which is our contribution to global efforts to tackle difficult issues.

We welcome talented and ambitious people from the global science and engineering community to join us in advancing knowledge by an interdisciplinary approach to both education and research.

Adarsh Sandhu | Research asia research news
Further information:
http://www.tut.ac.jp/english/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>