Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eyebrain Tracker to be used in clinical trial for Parkinson’s therapy

06.12.2011
EyeBrain’s eye-tracking device will be used to evaluate the effects of levodopa on patients’ motricity

EyeBrain, a company developing medical devices for the early diagnosis of neurological diseases, announces today that its EyeBrain Tracker device is being used in a clinical trial exploring the dyskinesia induced by treating patients suffering from idiopathic Parkinson’s disease with levodopa.

The endpoint of the trial is to find biomarkers for the late-onset complications of a treatment regime using levodopa (BIODYS). This compound, which is naturally transformed into dopamine in the brain, is one of the only drugs available for slowing the effects of Parkinson’s disease. However, over time, it induces dyskinesia in these patients, which takes the form of abnormal movements primarily affecting the face (tongue, lips, jaw) and extending as far as the arms and legs.

Altogether, 30 people will be enrolled on the trial. Half of them will be Parkinson’s sufferers who have been treated with levodopa and have developed dyskinesia, while the other half will consist of healthy subjects who will be used as a control group.

The trial is being sponsored and financed by Bordeaux University Hospital and was set up by professor Jean-François Tison, a neurologist attached to the CNRS Physiopathology of Parkinsonian syndromes unit at the University of Bordeaux Two (the Institute of Neurodegenerative Diseases, CNRS UMR 5293E, Bezard). The EyeBrain Tracker device is being funded under the joint 2007-2013 State-Region Plan (Aquitaine Regional Council and the FEDER fund).

“Patients suffering from idiopathic Parkinson’s disease will undergo an acute test as part of a pre-operational assessment for stimulating the deep recesses of the brain,” explained professor Tison. The motricity effects of the treatment will be evaluated by measuring the speed of eye movements with the help of the EyeBrain Tracker.

“We will see whether levodopa modifies the parameters of blinking in a way that is correlated with the improvement in motricity,” said professor Tison. “Using the EyeBrain Tracker enables us to measure the motricity effect through eye movements, since the blinking parameters are also linked to the patient’s general motricity. The patient’s response to this trial is also a predictor of their reaction to the neurosurgery that will follow.”

The EyeBrain Tracker, which is already used in the early diagnosis of Parkinsonian syndromes, such as progressive supra-nuclear paralysis (PSP), cortico-basal degeneration (CBD) and multiple systems atrophy (MSA), is thus continuing to broaden its fields of application. It is now playing an important role in clinical research into other neurological diseases, such as multiple sclerosis, and is a valuable aid in the early diagnosis and follow-up of these diseases.

“We are delighted to know that the EyeBrain Tracker is playing a part in a clinical trial targeting idiopathic Parkinson’s,” said the chairman of EyeBrain, Serge Kinkingnéhun. “This forms part of our goal of making the benefits of eye motricity available to a larger number of people suffering from neurological pathologies.”

Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s. In western countries it affects 0.3 per cent of the general population. Its prevalence increases with age, reaching one per cent in the over-60s, and as much as four per cent in the over-80s. There are 100,000 sufferers in France and 8,000 new cases are diagnosed each year.

About EyeBrain
EyeBrain manufactures medical devices for the early diagnosis of neurological diseases. These devices are based on the movement of the eyes, and they make it possible to test specific regions of the brain by recording and analyzing eye movements using very sophisticated algorithms developed by the company. EyeBrain’s devices fill a gap in neurological diagnostics. For the first time, clinicians can rely on a simple set of eye movement parameters to differentiate between very similar syndromes, such as progressive supra-nuclear paralysis (PSP) and cortico-basal degeneration (CBD). The test is easy to carry out, non-invasive, and the results are available in less than 20 minutes for a small cost.

The Mobile EyeBrain Tracker (EBT) comes as a complete solution including headphones, a computer with two screens and stimulation and analysis software. It is already being used routinely in hospitals to help with the early characterization of Parkinsonian syndromes. Studies are also underway for the diagnosis of multiple sclerosis (MS).

The Mobile EBT is the only device of its kind in the world to have obtained CE marking. The company has ISO 9001 and ISO 13485 certification.

EyeBrain, which is based in the Paris suburb of Ivry-sur-Seine, was founded in 2008 and currently employs 15 people. It has raised funding of EUR 1.2 million from the CapDecisif and G1J venture capital funds and already generates revenues through the sale of the EyeBrain Tracker. It is engaged in collaborations with the French National Health and Medical Research Institute (INSERM), the French National Scientific Research Center (CNRS), Paris University Hospitals group, the University of Paris-Descartes and the French Brain and Spinal Cord Institute.

For further information about the company, go to: http://www.eye-brain.com
For further information about eye tracking, go to: http://www.eyebrainpedia.com

Lucie Nguyen | Andrew Lloyd & Associates
Further information:
http://www.eye-brain.com

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>