Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eyebrain Tracker to be used in clinical trial for Parkinson’s therapy

06.12.2011
EyeBrain’s eye-tracking device will be used to evaluate the effects of levodopa on patients’ motricity

EyeBrain, a company developing medical devices for the early diagnosis of neurological diseases, announces today that its EyeBrain Tracker device is being used in a clinical trial exploring the dyskinesia induced by treating patients suffering from idiopathic Parkinson’s disease with levodopa.

The endpoint of the trial is to find biomarkers for the late-onset complications of a treatment regime using levodopa (BIODYS). This compound, which is naturally transformed into dopamine in the brain, is one of the only drugs available for slowing the effects of Parkinson’s disease. However, over time, it induces dyskinesia in these patients, which takes the form of abnormal movements primarily affecting the face (tongue, lips, jaw) and extending as far as the arms and legs.

Altogether, 30 people will be enrolled on the trial. Half of them will be Parkinson’s sufferers who have been treated with levodopa and have developed dyskinesia, while the other half will consist of healthy subjects who will be used as a control group.

The trial is being sponsored and financed by Bordeaux University Hospital and was set up by professor Jean-François Tison, a neurologist attached to the CNRS Physiopathology of Parkinsonian syndromes unit at the University of Bordeaux Two (the Institute of Neurodegenerative Diseases, CNRS UMR 5293E, Bezard). The EyeBrain Tracker device is being funded under the joint 2007-2013 State-Region Plan (Aquitaine Regional Council and the FEDER fund).

“Patients suffering from idiopathic Parkinson’s disease will undergo an acute test as part of a pre-operational assessment for stimulating the deep recesses of the brain,” explained professor Tison. The motricity effects of the treatment will be evaluated by measuring the speed of eye movements with the help of the EyeBrain Tracker.

“We will see whether levodopa modifies the parameters of blinking in a way that is correlated with the improvement in motricity,” said professor Tison. “Using the EyeBrain Tracker enables us to measure the motricity effect through eye movements, since the blinking parameters are also linked to the patient’s general motricity. The patient’s response to this trial is also a predictor of their reaction to the neurosurgery that will follow.”

The EyeBrain Tracker, which is already used in the early diagnosis of Parkinsonian syndromes, such as progressive supra-nuclear paralysis (PSP), cortico-basal degeneration (CBD) and multiple systems atrophy (MSA), is thus continuing to broaden its fields of application. It is now playing an important role in clinical research into other neurological diseases, such as multiple sclerosis, and is a valuable aid in the early diagnosis and follow-up of these diseases.

“We are delighted to know that the EyeBrain Tracker is playing a part in a clinical trial targeting idiopathic Parkinson’s,” said the chairman of EyeBrain, Serge Kinkingnéhun. “This forms part of our goal of making the benefits of eye motricity available to a larger number of people suffering from neurological pathologies.”

Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s. In western countries it affects 0.3 per cent of the general population. Its prevalence increases with age, reaching one per cent in the over-60s, and as much as four per cent in the over-80s. There are 100,000 sufferers in France and 8,000 new cases are diagnosed each year.

About EyeBrain
EyeBrain manufactures medical devices for the early diagnosis of neurological diseases. These devices are based on the movement of the eyes, and they make it possible to test specific regions of the brain by recording and analyzing eye movements using very sophisticated algorithms developed by the company. EyeBrain’s devices fill a gap in neurological diagnostics. For the first time, clinicians can rely on a simple set of eye movement parameters to differentiate between very similar syndromes, such as progressive supra-nuclear paralysis (PSP) and cortico-basal degeneration (CBD). The test is easy to carry out, non-invasive, and the results are available in less than 20 minutes for a small cost.

The Mobile EyeBrain Tracker (EBT) comes as a complete solution including headphones, a computer with two screens and stimulation and analysis software. It is already being used routinely in hospitals to help with the early characterization of Parkinsonian syndromes. Studies are also underway for the diagnosis of multiple sclerosis (MS).

The Mobile EBT is the only device of its kind in the world to have obtained CE marking. The company has ISO 9001 and ISO 13485 certification.

EyeBrain, which is based in the Paris suburb of Ivry-sur-Seine, was founded in 2008 and currently employs 15 people. It has raised funding of EUR 1.2 million from the CapDecisif and G1J venture capital funds and already generates revenues through the sale of the EyeBrain Tracker. It is engaged in collaborations with the French National Health and Medical Research Institute (INSERM), the French National Scientific Research Center (CNRS), Paris University Hospitals group, the University of Paris-Descartes and the French Brain and Spinal Cord Institute.

For further information about the company, go to: http://www.eye-brain.com
For further information about eye tracking, go to: http://www.eyebrainpedia.com

Lucie Nguyen | Andrew Lloyd & Associates
Further information:
http://www.eye-brain.com

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>