Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using the eye as a 'window into the brain'

17.10.2012
Quick, cheap retina scan can predict brain damage caused by multiple sclerosis

An inexpensive, five-minute eye scan can accurately assess the amount of brain damage in people with the debilitating autoimmune disorder multiple sclerosis (MS), and offer clues about how quickly the disease is progressing, according to results of two Johns Hopkins studies.

"The eye is the window into the brain and by measuring how healthy the eye is, we can determine how healthy the rest of the brain is," says Peter A. Calabresi, M.D., a professor of neurology at the Johns Hopkins University School of Medicine, and leader of the studies described in recent issues of The Lancet Neurology and the Archives of Neurology. "Eye scans are not that expensive, are really safe, and are widely used in ophthalmology, and now that we have evidence of their predictive value in MS, we think they are ready for prime time. We should be using this new quantitative tool to learn more about disease progression, including nerve damage and brain atrophy."

Calabresi and his colleagues used optical coherence tomography (OCT) to scan nerves deep in the back of the eye, applying special software they co-developed that is capable of assessing previously immeasurable layers of the light-sensitive retinal tissue. The scan uses no harmful radiation and is one-tenth the cost of an MRI. The software will soon be widely available commercially.

In the Lancet paper, Calabresi and his team reported measuring thickness or swelling of the inner nuclear layer of the retina in 164 patients with MS and 60 healthy controls, following changes in these tissues over four years. At the same time, they also used brain MRI to measure inflammation spots directly, and performed clinical tests to determine disability levels.

The more inflammation and swelling the researchers found in the retinas of the MS patients, the more inflammation showed up in their brain MRIs. The correlation, they said, affirmed the value of the retinal scans as a stand-alone surrogate for brain damage. Having such information so easily available could allow physicians to accurately tell how far the disease has progressed, and to better advise patients about how they should proceed with their care.

The researchers also found microcystic macular edema in the central part of the retinas of 10 of the MS patients, tiny pockets of fluid typically found in older, usually diabetic people. While Calabresi cautions that eye scans do not as yet have primary diagnostic value for MS, he says finding a cyst like this on the eye of a young, healthy person might be reason to have her evaluated for the disorder.

In the United States, there are roughly 400,000 people living with MS. The disorder typically strikes between the ages of 20 and 50 and affects two-to-three times as many women as men.

In the paper published in the Archives of Neurology, Calabresi and colleagues looked at eye and brain scans of 84 MS patients and 24 healthy controls. This time, they focused on two other deep retinal layers, the ganglion cell layer + inner plexiform layer (GCL+IPL), and the peripapillary retinal nerve fiber layer (pRFNL). Greater cell wasting in those areas was strongly correlated with more atrophy in the gray matter of the brain, signifying more nerve damage from MS. Gray matter consists of the part of the brain where nerve cells live, and plays a role similar to a computer's hard drive, in contrast to white matter that is more like the wiring that sends information out from the brain to the spinal cord and the rest of the body's nerves.

Calabresi, director of the Johns Hopkins Multiple Sclerosis Center, says this finding is particularly important because neurodegeneration is so difficult to accurately gauge. In a young person with MS, the brain may be atrophying but may cause no symptoms because the brain is able to compensate for what is being lost. Ultimately, though, the loss of brain cells becomes apparent and is irreversible. Calabresi says that if he saw the kind of thickness on an eye scan indicating severe atrophy, he would consider a patient's prognosis less encouraging than someone with a healthy retina, and this information may guide physicians to treat more aggressively. For example, he says he would likely redouble efforts to enter a patient into a clinical trial for an experimental medication before too much permanent damage takes place.

Calabresi says his findings could also shift how researchers approach MS, long believed to be caused by an immune system that wrongly attacks the fatty protein called myelin that insulates nerves and helps them send electrical signals that control movement, speech and other functions. The usefulness of the scans raises the possibility that there could be something else going on, as there is no myelin deep in the retina of the eye. If the immune system is going after something else along with myelin, it could help researchers find new medications to target the incapacitating symptoms of MS, such as blurred vision, numbness and weakness.

"It is really important to know what the immune system is attacking," he says. "The treatments we have right now are only moderately effective, so maybe we're not blocking the right kinds of cells."

Other Johns Hopkins researchers involved in the Lancet study include Shiv Saidha, M.B.B.Ch., MRCPI; Elias S. Sotirchos, M.D.; Mohamed A. Ibrahim, M.D.; Ciprian M. Crainiceanu, Ph.D.; Yasir J. Sepah, M.B.B.S.; John N. Ratchford, M.D.; Jiwon Oh, M.D.; Scott D. Newsome, D.O.; and Quan D. Nguyen, M.D.

Other Johns Hopkins researchers involved in the Archives study include Saidha, Sotirchos, Oh, Newsome, Ratchford, Crainiceanu and Daniel S. Reich, M.D., Ph.D.

Both studies were funded by grants from the National Multiple Sclerosis Society, the National Eye Institute (RO1 EY014993 and RO1 EY019473), and the Braxton Debbie Angela Dillon and Skip (DADS) Donor Advisor Fund.

For more information:

http://www.hopkinsmedicine.org/neurology_neurosurgery/experts/profiles/
team_member_profile/62C053127BF272E73EDB37A9B189BFA2/Peter_Calabresi
http://www.hopkinsmedicine.org/neurology_neurosurgery/specialty_areas/
multiple_sclerosis/

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>