Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using the eye as a 'window into the brain'

17.10.2012
Quick, cheap retina scan can predict brain damage caused by multiple sclerosis

An inexpensive, five-minute eye scan can accurately assess the amount of brain damage in people with the debilitating autoimmune disorder multiple sclerosis (MS), and offer clues about how quickly the disease is progressing, according to results of two Johns Hopkins studies.

"The eye is the window into the brain and by measuring how healthy the eye is, we can determine how healthy the rest of the brain is," says Peter A. Calabresi, M.D., a professor of neurology at the Johns Hopkins University School of Medicine, and leader of the studies described in recent issues of The Lancet Neurology and the Archives of Neurology. "Eye scans are not that expensive, are really safe, and are widely used in ophthalmology, and now that we have evidence of their predictive value in MS, we think they are ready for prime time. We should be using this new quantitative tool to learn more about disease progression, including nerve damage and brain atrophy."

Calabresi and his colleagues used optical coherence tomography (OCT) to scan nerves deep in the back of the eye, applying special software they co-developed that is capable of assessing previously immeasurable layers of the light-sensitive retinal tissue. The scan uses no harmful radiation and is one-tenth the cost of an MRI. The software will soon be widely available commercially.

In the Lancet paper, Calabresi and his team reported measuring thickness or swelling of the inner nuclear layer of the retina in 164 patients with MS and 60 healthy controls, following changes in these tissues over four years. At the same time, they also used brain MRI to measure inflammation spots directly, and performed clinical tests to determine disability levels.

The more inflammation and swelling the researchers found in the retinas of the MS patients, the more inflammation showed up in their brain MRIs. The correlation, they said, affirmed the value of the retinal scans as a stand-alone surrogate for brain damage. Having such information so easily available could allow physicians to accurately tell how far the disease has progressed, and to better advise patients about how they should proceed with their care.

The researchers also found microcystic macular edema in the central part of the retinas of 10 of the MS patients, tiny pockets of fluid typically found in older, usually diabetic people. While Calabresi cautions that eye scans do not as yet have primary diagnostic value for MS, he says finding a cyst like this on the eye of a young, healthy person might be reason to have her evaluated for the disorder.

In the United States, there are roughly 400,000 people living with MS. The disorder typically strikes between the ages of 20 and 50 and affects two-to-three times as many women as men.

In the paper published in the Archives of Neurology, Calabresi and colleagues looked at eye and brain scans of 84 MS patients and 24 healthy controls. This time, they focused on two other deep retinal layers, the ganglion cell layer + inner plexiform layer (GCL+IPL), and the peripapillary retinal nerve fiber layer (pRFNL). Greater cell wasting in those areas was strongly correlated with more atrophy in the gray matter of the brain, signifying more nerve damage from MS. Gray matter consists of the part of the brain where nerve cells live, and plays a role similar to a computer's hard drive, in contrast to white matter that is more like the wiring that sends information out from the brain to the spinal cord and the rest of the body's nerves.

Calabresi, director of the Johns Hopkins Multiple Sclerosis Center, says this finding is particularly important because neurodegeneration is so difficult to accurately gauge. In a young person with MS, the brain may be atrophying but may cause no symptoms because the brain is able to compensate for what is being lost. Ultimately, though, the loss of brain cells becomes apparent and is irreversible. Calabresi says that if he saw the kind of thickness on an eye scan indicating severe atrophy, he would consider a patient's prognosis less encouraging than someone with a healthy retina, and this information may guide physicians to treat more aggressively. For example, he says he would likely redouble efforts to enter a patient into a clinical trial for an experimental medication before too much permanent damage takes place.

Calabresi says his findings could also shift how researchers approach MS, long believed to be caused by an immune system that wrongly attacks the fatty protein called myelin that insulates nerves and helps them send electrical signals that control movement, speech and other functions. The usefulness of the scans raises the possibility that there could be something else going on, as there is no myelin deep in the retina of the eye. If the immune system is going after something else along with myelin, it could help researchers find new medications to target the incapacitating symptoms of MS, such as blurred vision, numbness and weakness.

"It is really important to know what the immune system is attacking," he says. "The treatments we have right now are only moderately effective, so maybe we're not blocking the right kinds of cells."

Other Johns Hopkins researchers involved in the Lancet study include Shiv Saidha, M.B.B.Ch., MRCPI; Elias S. Sotirchos, M.D.; Mohamed A. Ibrahim, M.D.; Ciprian M. Crainiceanu, Ph.D.; Yasir J. Sepah, M.B.B.S.; John N. Ratchford, M.D.; Jiwon Oh, M.D.; Scott D. Newsome, D.O.; and Quan D. Nguyen, M.D.

Other Johns Hopkins researchers involved in the Archives study include Saidha, Sotirchos, Oh, Newsome, Ratchford, Crainiceanu and Daniel S. Reich, M.D., Ph.D.

Both studies were funded by grants from the National Multiple Sclerosis Society, the National Eye Institute (RO1 EY014993 and RO1 EY019473), and the Braxton Debbie Angela Dillon and Skip (DADS) Donor Advisor Fund.

For more information:

http://www.hopkinsmedicine.org/neurology_neurosurgery/experts/profiles/
team_member_profile/62C053127BF272E73EDB37A9B189BFA2/Peter_Calabresi
http://www.hopkinsmedicine.org/neurology_neurosurgery/specialty_areas/
multiple_sclerosis/

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>