Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Expression of a single gene lets scientists easily grow hepatitis C virus in the lab


Worldwide, 185 million people have chronic hepatitis C. Since the late 1980s, when scientists discovered the virus that causes the infection, they have struggled to find ways to grow it in human cells in the lab -- an essential part of learning how the virus works and developing new effective treatments.

In a study published in Nature on August 12, scientists led by The Rockefeller University's Charles M. Rice, Maurice R. and Corinne P. Greenberg Professor in Virology and head of the Laboratory of Virology and Infectious Disease, report that when they overexpressed a particular gene in human liver cancer cell lines, the virus could easily replicate. This discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.

Researchers engineered cultured cells to contain a red marker that moves into the nucleus upon HCV infection. Nothing happened when normal cells were exposed to HCV (top), but when the researchers expressed the protein SEC14L2, some nuclei changed color from blue to purple (bottom).

Credit: Laboratory of Virology and Infectious Disease at The Rockefeller University/Nature

"Being able to easily culture HCV in the lab has many important implications for basic science research," says Rice. "There is still much we don't understand about how the virus operates, and how it interacts with liver cells and the immune system. "

Scientists have long attempted to understand what makes HCV tick, and in 1999 a group of German scientists succeeded in coaxing modified forms of the virus to replicate in cells in the laboratory. However, it was soon discovered that these forms of the virus were able to replicate because they had acquired certain "adaptive" mutations.

This was true for the vast majority of all samples from patients, except one, and left scientists with a puzzling question for more than a decade: What prevents non-mutated HCV from replicating in laboratory-grown cell lines? Rice and colleagues hypothesized that one or more critical elements might be missing in these cell lines.

To test this idea, they screened a library of about 7,000 human genes to look for one whose expression would allow replication of non-mutated HCV. When the scientists expressed the gene SEC14L2, the virus replicated in its wild-type, non-mutated form. Even adding serum samples from HCV-infected patients to these engineered cell lines resulted in virus replication.

"Practically speaking, this means that if scientists want to study HCV from an infected patient, it's now possible to take a blood sample, inoculate the engineered cells, and grow that patient's form of the virus in the lab," says first author Mohsan Saeed, a postdoc in Rice's laboratory.

It's not entirely clear how the protein expressed by SEC14L2 works, says Saeed, but it appears to inhibit lipids from interacting with dangerous reactive oxygen species, a process that prevents HCV replication.

Recent advances in HCV treatment have made it possible for millions of people to be cured of the virus. "New therapies, however, are extremely expensive and not perfect," Saeed notes. "As more patients are treated, drug resistant forms of HCV are emerging. Having a cell culture system where patient isolates can be grown and tested for resistance or susceptibility to alternative antiviral drug combinations should be useful for optimizing re-treatment strategies for those that fail treatment."

Even though effective therapies for HCV do exist, there is still much we need to understand about the virus, adds Saeed -- and understanding how HCV interacts with its host cell can help scientists learn more about similar viruses for which effective treatments have yet to be developed. "The lessons learned from one disease can be true for other diseases as well," he observes.

Wynne Parry | EurekAlert!

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>