Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expression of a single gene lets scientists easily grow hepatitis C virus in the lab

19.08.2015

Worldwide, 185 million people have chronic hepatitis C. Since the late 1980s, when scientists discovered the virus that causes the infection, they have struggled to find ways to grow it in human cells in the lab -- an essential part of learning how the virus works and developing new effective treatments.

In a study published in Nature on August 12, scientists led by The Rockefeller University's Charles M. Rice, Maurice R. and Corinne P. Greenberg Professor in Virology and head of the Laboratory of Virology and Infectious Disease, report that when they overexpressed a particular gene in human liver cancer cell lines, the virus could easily replicate. This discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.


Researchers engineered cultured cells to contain a red marker that moves into the nucleus upon HCV infection. Nothing happened when normal cells were exposed to HCV (top), but when the researchers expressed the protein SEC14L2, some nuclei changed color from blue to purple (bottom).

Credit: Laboratory of Virology and Infectious Disease at The Rockefeller University/Nature

"Being able to easily culture HCV in the lab has many important implications for basic science research," says Rice. "There is still much we don't understand about how the virus operates, and how it interacts with liver cells and the immune system. "

Scientists have long attempted to understand what makes HCV tick, and in 1999 a group of German scientists succeeded in coaxing modified forms of the virus to replicate in cells in the laboratory. However, it was soon discovered that these forms of the virus were able to replicate because they had acquired certain "adaptive" mutations.

This was true for the vast majority of all samples from patients, except one, and left scientists with a puzzling question for more than a decade: What prevents non-mutated HCV from replicating in laboratory-grown cell lines? Rice and colleagues hypothesized that one or more critical elements might be missing in these cell lines.

To test this idea, they screened a library of about 7,000 human genes to look for one whose expression would allow replication of non-mutated HCV. When the scientists expressed the gene SEC14L2, the virus replicated in its wild-type, non-mutated form. Even adding serum samples from HCV-infected patients to these engineered cell lines resulted in virus replication.

"Practically speaking, this means that if scientists want to study HCV from an infected patient, it's now possible to take a blood sample, inoculate the engineered cells, and grow that patient's form of the virus in the lab," says first author Mohsan Saeed, a postdoc in Rice's laboratory.

It's not entirely clear how the protein expressed by SEC14L2 works, says Saeed, but it appears to inhibit lipids from interacting with dangerous reactive oxygen species, a process that prevents HCV replication.

Recent advances in HCV treatment have made it possible for millions of people to be cured of the virus. "New therapies, however, are extremely expensive and not perfect," Saeed notes. "As more patients are treated, drug resistant forms of HCV are emerging. Having a cell culture system where patient isolates can be grown and tested for resistance or susceptibility to alternative antiviral drug combinations should be useful for optimizing re-treatment strategies for those that fail treatment."

Even though effective therapies for HCV do exist, there is still much we need to understand about the virus, adds Saeed -- and understanding how HCV interacts with its host cell can help scientists learn more about similar viruses for which effective treatments have yet to be developed. "The lessons learned from one disease can be true for other diseases as well," he observes.

Wynne Parry | EurekAlert!

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017 | Life Sciences

The fastest light-driven current source

26.09.2017 | Physics and Astronomy

Beer can lift your spirits

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>