Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New explanation for cardiac arrest

20.04.2010
Researchers have discovered a new disorder linked to heart problems that stems from a genetic defect in the protein glycogenin. In a worst case scenario, disruption of this protein's function can lead to cardiac arrest, which is exactly what happened to the young man whose case triggered the investigation at Sahlgrenska University Hospital at the University of Gothenburg, Sweden, that led to a brand new diagnosis.

Published today in the revered New England Journal of Medicine, the study details how a young man suffered a cardiac arrest but survived thanks to the work of the ambulance paramedics. An investigation at Sahlgrenska University Hospital led to the discovery of not only a new disorder but also how a defect in the protein glycogenin can lead to an energy crisis in the muscle cells.

This protein's job is to initiate the build-up of glycogen that constitutes the muscle cells' carbohydrate reserves. The glycogenin starts the actual process by building up a short chain of around ten sugar molecules, which can then be turned into glycogen with the help of other enzymes. During strong muscular work the sugar molecules in the glycogen are used to create energy.

"The disorder is characterised by an inability to form the initial chain of sugar molecules," says Anders Oldfors, who headed up the research team and is a professor at the Sahlgrenska Academy and consultant at Sahlgrenska University Hospital. "This leads to a shortage of glycogen and an energy crisis in the muscle cells that can result in cardiac arrest."

The study also reveals how muscle cells that have a severe congenital defect can adjust and find other ways of sourcing energy, though it may not be sufficient in all situations.

"We're hoping that our continued research in the field will provide answers to how the change in the glycogenin causes an inability to start accumulating carbohydrates in the muscle cells," says Oldfors.

Clinically, the discovery means that this disorder must be considered as a diagnosis when investigating heart problems. For patients, a correct diagnosis means that there is preventative treatment available, though no cure is on the horizon at present. As the cause of the disorder is a genetic defect, it is hoped that in the future patients can be given a customised treatment, or gene therapy, for it.

"But we don't yet know how common this disorder is," says Oldfors. "This is something that the future will hold now that we are in a position to make the correct diagnosis."

CARDIAC ARREST
Cardiac arrest occurs when the blood suddenly stops pumping out of the heart. This leads to unconsciousness, and the breathing stops on account of an inadequate supply of blood. It is one of the most common causes of death and accounts for 11-18 per cent of all deaths in Sweden. Many old people are affected, with the trigger frequently being a heart attack. Cardiac arrest is very rare in young people and is generally caused by some form of hereditary heart muscle disorder. Cardio-pulmonary resuscitation and defibrillation can save patients who have suffered cardiac arrest. Preventative treatment takes the form of medication, and a surgically inserted defibrillator can also be used as protection. According to the Swedish Resuscitation Council 300-400 people a year are revived after cardiac arrest outside hospital and roughly 1,000-1,500 people in hospital.
For more information, please contact:
Professor Anders Oldfors, Department of Pathology, Institute of Biomedicine, tel: +46 31 342 2084, mobile: +46 707 33 8116, e-mail: anders.oldfors@gu.se
Associate professor Ali-Reza Moslemi, Department of Pathology, Institute of Biomedicine, tel: +46 31 342 2343, e-mail: ali-reza.moslemi@pathology.gu.se
Associate professor Christopher Lindberg, Department of Clinical Neuroscience and Rehabilitation and consultant at Sahlgrenska University Hospital, tel: +46 31 342 9031, e-mail:christopher.lindberg@vgregion.se
Associate professor Bert Andersson, Department of Molecular and Clinical Medicine and consultant at Sahlgrenska University Hospital, tel: +46 31 342 7537, e-mail: Bert.Andersson@wlab.gu.se
Journal: New England Journal of Medicine (2010) Vol 362, no 13, pp 1203-1210
Title of article: Glycogenin-1 Deficiency and Inactivated Priming of Glycogen Synthesis

Authors: Ali-Reza Moslemi, Christopher Lindberg, Johanna Nilsson, Homa Tajsharghi, Bert Andersson and Anders Oldfors

Helena Aaberg | idw
Further information:
http://www.sahlgrenska.gu.se/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>