Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiments show 'artificial gravity' can prevent muscle loss in space

24.07.2009
UTMB/NASA study used centrifuge and simulated weightlessness with bed rest

When the Apollo 11 crew got back from the moon, 40 years ago this week, they showed no ill effects from seven days spent in weightlessness.

But as American astronauts and Soviet cosmonauts began conducting longer-duration space flights, scientists noticed a disturbing trend: the longer humans stay in zero gravity, the more muscle they lose.

Space travelers exposed to weightlessness for a year or more — such as those on a mission to Mars, for example — could wind up crippled on their return to Earth, unable to walk or even sit up.

Now, researchers at the University of Texas Medical Branch at Galveston have conducted the first human experiments using a device intended to counteract this effect — a NASA centrifuge that spins a test subject with his or her feet outward 30 times a minute, creating an effect similar to standing against a force two and half times that of gravity. Working with volunteers kept in bed for three weeks to simulate zero-gravity conditions, they found that just one hour a day on the centrifuge was sufficient to restore muscle synthesis.

"This gives us a potential countermeasure that we might be able to use on extended space flights and solve a lot of the problems with muscle wasting," said UTMB associate professor Douglas Paddon-Jones, senior author of a paper on the centrifuge research in the July issue of the Journal of Applied Physiology. "This small amount of loading, one hour a day of essentially standing up, maintained the potential for muscle growth."

Fifteen healthy male volunteers participated in the study, carried out in UTMB's General Clinical Research Center. All spent 21 days lying in a slightly head-down position that previous investigations have shown produces effects on muscles like those of weightlessness. Eight rode the centrifuge daily. Measurements of protein synthesis and breakdown in thigh and calf muscle were taken at the beginning and end of the investigation, using muscle biopsies and blood samples. The results showed that members of the centrifuge group continued to make thigh muscle protein at a normal rate, while the control group's muscle synthesis rate dropped by almost half.

Paddon-Jones cautioned that the rate of muscle protein synthesis alone does not necessarily predict changes in muscle function. But, he pointed out, it was still a strong indicator that a relatively brief intervention could have a positive effect in preventing zero-gravity muscle loss — one that might also be applied on Earth.

"We've studied elderly inpatients here at UTMB — 95 percent of the time they're completely inactive, and in three days they lose more than a kilogram of muscle," Paddon-Jones said. "A human centrifuge may not be the answer, but we are interested in seeing if something as simple as increasing the amount of time our patients spend standing and moving can slow down this process. This NASA research is one of a series of important studies that we hope to ultimately translate to a clinical population."

The other authors of the Journal of Applied Physiology article ("Artificial gravity maintains skeletal muscle protein synthesis during 21 days simulated microgravity") were assistant professor T. Brock Symons, associate professor Melinda Sheffield-Moore, associate professor David L. Chinkes and professor Arny Ferrando. NASA, the National Institutes of Health and UTMB's Claude D. Pepper Older Americans Independence Center provided support for the investigation.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>