Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiments show 'artificial gravity' can prevent muscle loss in space

24.07.2009
UTMB/NASA study used centrifuge and simulated weightlessness with bed rest

When the Apollo 11 crew got back from the moon, 40 years ago this week, they showed no ill effects from seven days spent in weightlessness.

But as American astronauts and Soviet cosmonauts began conducting longer-duration space flights, scientists noticed a disturbing trend: the longer humans stay in zero gravity, the more muscle they lose.

Space travelers exposed to weightlessness for a year or more — such as those on a mission to Mars, for example — could wind up crippled on their return to Earth, unable to walk or even sit up.

Now, researchers at the University of Texas Medical Branch at Galveston have conducted the first human experiments using a device intended to counteract this effect — a NASA centrifuge that spins a test subject with his or her feet outward 30 times a minute, creating an effect similar to standing against a force two and half times that of gravity. Working with volunteers kept in bed for three weeks to simulate zero-gravity conditions, they found that just one hour a day on the centrifuge was sufficient to restore muscle synthesis.

"This gives us a potential countermeasure that we might be able to use on extended space flights and solve a lot of the problems with muscle wasting," said UTMB associate professor Douglas Paddon-Jones, senior author of a paper on the centrifuge research in the July issue of the Journal of Applied Physiology. "This small amount of loading, one hour a day of essentially standing up, maintained the potential for muscle growth."

Fifteen healthy male volunteers participated in the study, carried out in UTMB's General Clinical Research Center. All spent 21 days lying in a slightly head-down position that previous investigations have shown produces effects on muscles like those of weightlessness. Eight rode the centrifuge daily. Measurements of protein synthesis and breakdown in thigh and calf muscle were taken at the beginning and end of the investigation, using muscle biopsies and blood samples. The results showed that members of the centrifuge group continued to make thigh muscle protein at a normal rate, while the control group's muscle synthesis rate dropped by almost half.

Paddon-Jones cautioned that the rate of muscle protein synthesis alone does not necessarily predict changes in muscle function. But, he pointed out, it was still a strong indicator that a relatively brief intervention could have a positive effect in preventing zero-gravity muscle loss — one that might also be applied on Earth.

"We've studied elderly inpatients here at UTMB — 95 percent of the time they're completely inactive, and in three days they lose more than a kilogram of muscle," Paddon-Jones said. "A human centrifuge may not be the answer, but we are interested in seeing if something as simple as increasing the amount of time our patients spend standing and moving can slow down this process. This NASA research is one of a series of important studies that we hope to ultimately translate to a clinical population."

The other authors of the Journal of Applied Physiology article ("Artificial gravity maintains skeletal muscle protein synthesis during 21 days simulated microgravity") were assistant professor T. Brock Symons, associate professor Melinda Sheffield-Moore, associate professor David L. Chinkes and professor Arny Ferrando. NASA, the National Institutes of Health and UTMB's Claude D. Pepper Older Americans Independence Center provided support for the investigation.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>