Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental vaccine protects monkeys against chikungunya

05.03.2010
Mosquito-borne virus has infected millions of people in Asia, Africa and Europe

Imagine a mosquito-borne virus that has already infected millions of people in recent outbreaks in South and Southeast Asia, the islands of the Indian Ocean, Africa and northern Italy.

Although seldom fatal, it causes highly painful arthritis-like symptoms that can linger for months or even years. It's capable of adapting to spread through a mosquito species common in much of North America. And no vaccine or treatment exists to protect humans from its effects.

The scenario may sound like something dreamed up as a training exercise by public health authorities, but the virus is all too real. Called chikungunya, from an East African tribal word describing the contorted postures of its pain-wracked victims, the pathogen has been the focus of intense scientific interest ever since a 2006 outbreak on the island of La Reunion in the Indian Ocean infected about 266,000 people, killing 260 of them.

Now, researchers at the National Institute of Allergy and Infectious Diseases, the University of Texas Medical Branch at Galveston, Purdue University and Bioqual Inc. have developed an experimental vaccine for chikungunya virus and successfully tested it in monkeys. Described in a paper appearing in the March issue of Nature Medicine, the vaccine is composed of noninfectious "virus-like particles." Although coated with the same proteins that enable chikungunya to pass through cell membranes, the vaccine particles lack the proteins that chikungunya uses to replicate inside cells. They look like chikungunya to the immune systems of rhesus macaques, however, which respond to exposure by generating antibodies that defend the monkeys from infection by the real virus.

"This vaccine did an excellent job of protecting the macaques from chikungunya," said UTMB professor Stephen Higgs, one of the paper's authors. "That it worked so well in a primate model is good news — these macaques are quite similar to humans in their response to chikungunya, and we badly need to develop an effective human vaccine for this virus."

To create the virus-like particles used in the experimental vaccine, the researchers used genetic engineering techniques to produce the structural proteins that produce the spiky, roughly spherical exterior possessed by chikungunya viruses before they have entered a cell. The proteins then assembled themselves into harmless balls that resembled particles of Sindbis virus — a relative of chikungunya and a fellow member of the alphavirus genus, which also includes a number of insect-borne viruses capable of causing dangerous encephalitis in humans.

Serum drawn from rhesus macaques injected with the virus-like particles contained substantial levels of antibodies that inactivated chikungunya virus. Two groups of macaques were then inoculated, either with virus-like particles or with a sham solution containing no vaccine. When the researchers challenged the monkeys by injection with chikungunya 15 weeks later, they found that the vaccine had completely protected the animals from the virus.

Dr.Gary Nabel, director of the NIAID's Vaccine Research Center and corresponding author on the Nature Medicine paper, said that the vaccine's effectiveness against chikungunya had led his group to plan follow-up investigations into whether the same approach would work against other alphaviruses, such as Western and Eastern equine encephalitis viruses (both responsible for periodic outbreaks in the United States), and Africa's o'nyong-nyong virus.

Other authors of the Nature Medicine paper included Wataru Akahata, Zhi-Yong Yang, Wing-Pui Kong and Srinivas Rao of the NIAID Vaccine Research Center; Hanne Anderson and Mark G. Lewis of Bioqual Inc., Rockville, Md.; and Siyang Sun, Heather Holdaway and Michael Rossmann of Purdue University. The Intramural Research Program of the NIAID Vaccine Research Center supported this investigation.

ABOUT UTMB: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB is a component of the University of Texas System.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>