Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental vaccine protects monkeys against chikungunya

05.03.2010
Mosquito-borne virus has infected millions of people in Asia, Africa and Europe

Imagine a mosquito-borne virus that has already infected millions of people in recent outbreaks in South and Southeast Asia, the islands of the Indian Ocean, Africa and northern Italy.

Although seldom fatal, it causes highly painful arthritis-like symptoms that can linger for months or even years. It's capable of adapting to spread through a mosquito species common in much of North America. And no vaccine or treatment exists to protect humans from its effects.

The scenario may sound like something dreamed up as a training exercise by public health authorities, but the virus is all too real. Called chikungunya, from an East African tribal word describing the contorted postures of its pain-wracked victims, the pathogen has been the focus of intense scientific interest ever since a 2006 outbreak on the island of La Reunion in the Indian Ocean infected about 266,000 people, killing 260 of them.

Now, researchers at the National Institute of Allergy and Infectious Diseases, the University of Texas Medical Branch at Galveston, Purdue University and Bioqual Inc. have developed an experimental vaccine for chikungunya virus and successfully tested it in monkeys. Described in a paper appearing in the March issue of Nature Medicine, the vaccine is composed of noninfectious "virus-like particles." Although coated with the same proteins that enable chikungunya to pass through cell membranes, the vaccine particles lack the proteins that chikungunya uses to replicate inside cells. They look like chikungunya to the immune systems of rhesus macaques, however, which respond to exposure by generating antibodies that defend the monkeys from infection by the real virus.

"This vaccine did an excellent job of protecting the macaques from chikungunya," said UTMB professor Stephen Higgs, one of the paper's authors. "That it worked so well in a primate model is good news — these macaques are quite similar to humans in their response to chikungunya, and we badly need to develop an effective human vaccine for this virus."

To create the virus-like particles used in the experimental vaccine, the researchers used genetic engineering techniques to produce the structural proteins that produce the spiky, roughly spherical exterior possessed by chikungunya viruses before they have entered a cell. The proteins then assembled themselves into harmless balls that resembled particles of Sindbis virus — a relative of chikungunya and a fellow member of the alphavirus genus, which also includes a number of insect-borne viruses capable of causing dangerous encephalitis in humans.

Serum drawn from rhesus macaques injected with the virus-like particles contained substantial levels of antibodies that inactivated chikungunya virus. Two groups of macaques were then inoculated, either with virus-like particles or with a sham solution containing no vaccine. When the researchers challenged the monkeys by injection with chikungunya 15 weeks later, they found that the vaccine had completely protected the animals from the virus.

Dr.Gary Nabel, director of the NIAID's Vaccine Research Center and corresponding author on the Nature Medicine paper, said that the vaccine's effectiveness against chikungunya had led his group to plan follow-up investigations into whether the same approach would work against other alphaviruses, such as Western and Eastern equine encephalitis viruses (both responsible for periodic outbreaks in the United States), and Africa's o'nyong-nyong virus.

Other authors of the Nature Medicine paper included Wataru Akahata, Zhi-Yong Yang, Wing-Pui Kong and Srinivas Rao of the NIAID Vaccine Research Center; Hanne Anderson and Mark G. Lewis of Bioqual Inc., Rockville, Md.; and Siyang Sun, Heather Holdaway and Michael Rossmann of Purdue University. The Intramural Research Program of the NIAID Vaccine Research Center supported this investigation.

ABOUT UTMB: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB is a component of the University of Texas System.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>