Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental vaccine protects monkeys against chikungunya

05.03.2010
Mosquito-borne virus has infected millions of people in Asia, Africa and Europe

Imagine a mosquito-borne virus that has already infected millions of people in recent outbreaks in South and Southeast Asia, the islands of the Indian Ocean, Africa and northern Italy.

Although seldom fatal, it causes highly painful arthritis-like symptoms that can linger for months or even years. It's capable of adapting to spread through a mosquito species common in much of North America. And no vaccine or treatment exists to protect humans from its effects.

The scenario may sound like something dreamed up as a training exercise by public health authorities, but the virus is all too real. Called chikungunya, from an East African tribal word describing the contorted postures of its pain-wracked victims, the pathogen has been the focus of intense scientific interest ever since a 2006 outbreak on the island of La Reunion in the Indian Ocean infected about 266,000 people, killing 260 of them.

Now, researchers at the National Institute of Allergy and Infectious Diseases, the University of Texas Medical Branch at Galveston, Purdue University and Bioqual Inc. have developed an experimental vaccine for chikungunya virus and successfully tested it in monkeys. Described in a paper appearing in the March issue of Nature Medicine, the vaccine is composed of noninfectious "virus-like particles." Although coated with the same proteins that enable chikungunya to pass through cell membranes, the vaccine particles lack the proteins that chikungunya uses to replicate inside cells. They look like chikungunya to the immune systems of rhesus macaques, however, which respond to exposure by generating antibodies that defend the monkeys from infection by the real virus.

"This vaccine did an excellent job of protecting the macaques from chikungunya," said UTMB professor Stephen Higgs, one of the paper's authors. "That it worked so well in a primate model is good news — these macaques are quite similar to humans in their response to chikungunya, and we badly need to develop an effective human vaccine for this virus."

To create the virus-like particles used in the experimental vaccine, the researchers used genetic engineering techniques to produce the structural proteins that produce the spiky, roughly spherical exterior possessed by chikungunya viruses before they have entered a cell. The proteins then assembled themselves into harmless balls that resembled particles of Sindbis virus — a relative of chikungunya and a fellow member of the alphavirus genus, which also includes a number of insect-borne viruses capable of causing dangerous encephalitis in humans.

Serum drawn from rhesus macaques injected with the virus-like particles contained substantial levels of antibodies that inactivated chikungunya virus. Two groups of macaques were then inoculated, either with virus-like particles or with a sham solution containing no vaccine. When the researchers challenged the monkeys by injection with chikungunya 15 weeks later, they found that the vaccine had completely protected the animals from the virus.

Dr.Gary Nabel, director of the NIAID's Vaccine Research Center and corresponding author on the Nature Medicine paper, said that the vaccine's effectiveness against chikungunya had led his group to plan follow-up investigations into whether the same approach would work against other alphaviruses, such as Western and Eastern equine encephalitis viruses (both responsible for periodic outbreaks in the United States), and Africa's o'nyong-nyong virus.

Other authors of the Nature Medicine paper included Wataru Akahata, Zhi-Yong Yang, Wing-Pui Kong and Srinivas Rao of the NIAID Vaccine Research Center; Hanne Anderson and Mark G. Lewis of Bioqual Inc., Rockville, Md.; and Siyang Sun, Heather Holdaway and Michael Rossmann of Purdue University. The Intramural Research Program of the NIAID Vaccine Research Center supported this investigation.

ABOUT UTMB: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB is a component of the University of Texas System.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>