Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental approach may reverse rheumatoid arthritis and osteoporosis

24.09.2009
Researchers have identified a mechanism that may keep a well known signaling molecule from eroding bone and inflaming joints, according to an early study published online today in the Journal of Clinical Investigation.

Bone is continually recycled to maintain its strength through the competing action of osteoclasts, cells that break down aging bone, and osteoblasts, which build new bone. Osteoclasts also play a central role in common diseases that erode bone, where two signaling molecules, TNFá and RANKL, cause too much bone breakdown.

Both are known to turn on the nuclear factor kappa B complex (NF-êB), which turns on genes that cause the stem cell precursors of osteoclasts to mature and start eating bone. While both TNFá and RANKL encourage bone loss, the current study argues that TNFá and RANKL have different effects on levels of a key inhibitory protein within the NF-êB pathway called NF-êB p100, with important consequences for drug design.

The NF-êB pathway as a whole signals for more active osteoclasts, but NF-êB p100 (p100) interferes with the ability of that same pathway to pass on the bone loss signal. While both TNFá and RANKL activate NF-êB signaling, RANKL efficiently converts p100 into a form that no longer blocks NF-êB pathway signaling and that leads to bone loss. In contrast, the current study is the first to show that TNFá lets p100 build up. Thus, TNFá both causes bone loss through NF-êB signaling and limits it via p100 accumulation.

Experiments found further that mice genetically engineered to lack NF-êB2p100 suffered more severe joint erosion and inflammation than their normal littermates in the face of TNFá. TNFá, but not RANKL, also increased levels of a protein in osteoclast precursors called TNF receptor-associated factor 3 (TRAF 3), which may help NF-êB p100 block osteoclast formation and inflammation.

"While further studies will be required to confirm and detail this mechanism, our results argue strongly that increasing levels of either TRAF3 or NF-êB p100 could represent a powerful new way to limit bone destruction and inflammation-induced bone loss seen in osteoporosis and rheumatoid arthritis," said Brendan Boyce, M.D., professor within the Department of Pathology and Laboratory Medicine at the University of Rochester Medical Center, and the study's corresponding author. "NF-êB p100 levels may vary with each person's genes, making some more susceptible to TNFá-driven disease. Future solutions may be local delivery of p100 into diseased joints via gene therapy, or to target with a drug the enzyme, NIK, which otherwise limits the p100 supply."

At the Center of Bone Loss and Inflammation

Drugs that block the function of TNFá are blockbusters (e.g. Enbrel, Humira and Remicade) because they effectively prevent bone loss and inflammation in most patients with rheumatoid arthritis. They have also been shown to reduce bone loss in women early after menopause.

Other studies, however, have suggested that TNFá cannot cause precursor cells to become osteoclasts unless RANKL first "primes" them. The debate has been spirited because it goes to which molecule should be targeted in near-future attempts to design more precise drugs.

The current results show that TNFá can signal for bone loss without RANKL, providing NF-êB p100 is also absent. By engineering mice with neither RANKL nor NF-êB p100, Boyce and colleagues found that TNFá had greatly increased ability to signal for osteoclast maturation and bone loss in this scenario.

Another unexpected result was measured in changes in gene expression, the process by which information encoded in DNA chains is used to build proteins that make up the body's structures and carry it messages. The team found that mice engineered to over-express TNFá, but also to lack NF-êB p100, had significantly increased inflammation in their joints when compared to mice with high TNFá levels, but with p100 present to counter it.

Along with Boyce, the study was led by Zhenqiang Yao and Lianping Xing in the Department of Pathology and Laboratory Medicine at the University of Rochester Medical Center. The study was funded in part by the National Institutes of Health.

"We believe NF-êB p100 limits not only osteoclast maturation, but also the number of inflammatory cells attracted to the joints in response to TNFá," Boyce said. "If confirmed, it would mean that p100 has more than one role in more than one major bone disease, and thus would create new opportunities to reverse disease by manipulating p100 levels."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>