Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental approach may reverse rheumatoid arthritis and osteoporosis

24.09.2009
Researchers have identified a mechanism that may keep a well known signaling molecule from eroding bone and inflaming joints, according to an early study published online today in the Journal of Clinical Investigation.

Bone is continually recycled to maintain its strength through the competing action of osteoclasts, cells that break down aging bone, and osteoblasts, which build new bone. Osteoclasts also play a central role in common diseases that erode bone, where two signaling molecules, TNFá and RANKL, cause too much bone breakdown.

Both are known to turn on the nuclear factor kappa B complex (NF-êB), which turns on genes that cause the stem cell precursors of osteoclasts to mature and start eating bone. While both TNFá and RANKL encourage bone loss, the current study argues that TNFá and RANKL have different effects on levels of a key inhibitory protein within the NF-êB pathway called NF-êB p100, with important consequences for drug design.

The NF-êB pathway as a whole signals for more active osteoclasts, but NF-êB p100 (p100) interferes with the ability of that same pathway to pass on the bone loss signal. While both TNFá and RANKL activate NF-êB signaling, RANKL efficiently converts p100 into a form that no longer blocks NF-êB pathway signaling and that leads to bone loss. In contrast, the current study is the first to show that TNFá lets p100 build up. Thus, TNFá both causes bone loss through NF-êB signaling and limits it via p100 accumulation.

Experiments found further that mice genetically engineered to lack NF-êB2p100 suffered more severe joint erosion and inflammation than their normal littermates in the face of TNFá. TNFá, but not RANKL, also increased levels of a protein in osteoclast precursors called TNF receptor-associated factor 3 (TRAF 3), which may help NF-êB p100 block osteoclast formation and inflammation.

"While further studies will be required to confirm and detail this mechanism, our results argue strongly that increasing levels of either TRAF3 or NF-êB p100 could represent a powerful new way to limit bone destruction and inflammation-induced bone loss seen in osteoporosis and rheumatoid arthritis," said Brendan Boyce, M.D., professor within the Department of Pathology and Laboratory Medicine at the University of Rochester Medical Center, and the study's corresponding author. "NF-êB p100 levels may vary with each person's genes, making some more susceptible to TNFá-driven disease. Future solutions may be local delivery of p100 into diseased joints via gene therapy, or to target with a drug the enzyme, NIK, which otherwise limits the p100 supply."

At the Center of Bone Loss and Inflammation

Drugs that block the function of TNFá are blockbusters (e.g. Enbrel, Humira and Remicade) because they effectively prevent bone loss and inflammation in most patients with rheumatoid arthritis. They have also been shown to reduce bone loss in women early after menopause.

Other studies, however, have suggested that TNFá cannot cause precursor cells to become osteoclasts unless RANKL first "primes" them. The debate has been spirited because it goes to which molecule should be targeted in near-future attempts to design more precise drugs.

The current results show that TNFá can signal for bone loss without RANKL, providing NF-êB p100 is also absent. By engineering mice with neither RANKL nor NF-êB p100, Boyce and colleagues found that TNFá had greatly increased ability to signal for osteoclast maturation and bone loss in this scenario.

Another unexpected result was measured in changes in gene expression, the process by which information encoded in DNA chains is used to build proteins that make up the body's structures and carry it messages. The team found that mice engineered to over-express TNFá, but also to lack NF-êB p100, had significantly increased inflammation in their joints when compared to mice with high TNFá levels, but with p100 present to counter it.

Along with Boyce, the study was led by Zhenqiang Yao and Lianping Xing in the Department of Pathology and Laboratory Medicine at the University of Rochester Medical Center. The study was funded in part by the National Institutes of Health.

"We believe NF-êB p100 limits not only osteoclast maturation, but also the number of inflammatory cells attracted to the joints in response to TNFá," Boyce said. "If confirmed, it would mean that p100 has more than one role in more than one major bone disease, and thus would create new opportunities to reverse disease by manipulating p100 levels."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>