Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Exhaustion syndrome leaves measurable changes in the brain

Exhaustion syndrome, also called burnout and exhaustion depression, leaves objectively measurable changes in the brain – including reduced activity in the frontal lobes and altered regulation of the stress hormone cortisol. This is shown in a new dissertation from Umeå University in Sweden.

Certain personality traits heighten susceptibility to psychiatric disorders. Therefore a research team at Umeå University wanted to study whether this patient group had any susceptibility factors that could explain the development of their disorder.

The patient group is distinguished by being anxious and pessimistic, with a weak sense of self, which is common in many psychiatric disorders. What was special about this group was that they stood out as persistent, ambitious, and pedantic individuals.

Being ambitious, fastidious, and overachieving also appears to make a person more prone to exhaustion syndrome. According to Agneta Sandström’s dissertation, individuals with exhaustion syndrome demonstrate impaired memory and attention capacity as well as reduced brain activity in parts of the frontal lobes. Regulation of the stress hormone cortisol is also impacted in the group, with altered sensitivity in the hypothalamic-pituitary-adrenal axis (HPA axis).

The dissertation addresses whether it is possible to use neuropsychological tests to confirm and describe the cognitive problems reported by patients suffering from exhaustion syndrome. Above all, patients demonstrate problems regarding attention and working memory. Patients were also asked to perform working memory tests while lying in a functional magnetic resonance camera that measures the brains activity patterns. Exhaustion syndrome patients proved to have a different activity pattern in the brain when they performed a language test of their working memory, and they also activate parts of the frontal lobe less than healthy subjects and a group of patients who had recently developed depression.

The HPA axis in the patient group shows reduced sensitivity in the pituitary, with less secretion of adrenocorticotropic hormone (ACTH) following stimulation with corticotropin (CRH), as well as heightened sensitivity in the adrenal cortex, with increased release of cortisol in relation to the amount of ACTH secreted. There is also a difference in the diurnal rhythm of corisol, with the patients presenting a flatter secretion curve than the other two groups. The researchers could not detect any reduction in the volume of the hippocampus in the patient group. The proportion of individuals with measurable levels of the pro-inflammatory cytokine interleukin 1 is higher in the patient group.

In summary, the studies indicate that there is an association between personality, general health, cognitive ability, and neuroendocrinal dysfunction in exhaustion syndrome. The cognitive problems reflected in the test scores are also mirrored in a different activity pattern in the brain for patients with exhaustion depression. Agneta Sandström has also found support for there being similarities with clinical depression, but with well-defined differences.

Agneta Sandström can be reached at phone: +46 (0)63-15 49 16; mobile +46 (0)70-327 93 90; e-mail

Pressofficer Bertil Born;; +46-703 886 058
Dissertation: Neurocognitive and endocrine dysfunction in women with exhaustion syndrome

Bertil Born | idw
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>