Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Those who exercise when young have stronger bones when they grow old

03.05.2010
The positive effects of exercise while growing up seem to last longer than previously believed. New findings suggest that physical activity when young increases bone density and size, which may mean a reduced risk of osteoporosis later in life, reveals a thesis from the Sahlgrenska Academy at the University of Gothenburg, Sweden.

For the thesis, around 3,200 men had their bones examined and their exercise habits mapped. Of these, just over 2,300 18-year-olds were selected at random to have their heel bone examined by the researchers. The heel bone is particularly useful to study as it is directly impacted by exercise, being loaded with the full weight of the body.

“In this group, we found that those who actively did sports, and also those who used to do sports, had greater bone density than those who had never done sports,” explains Martin Nilsson, physiotherapist and doctoral student at the Institute of Medicine.

The researchers also looked at bone density and structure in the lower leg in around 360 19-year-old men who had previously done sports but had now stopped training. They found that men who had stopped training more than six years ago still had larger and thicker bones in the lower leg than those who had never done sports.

... more about:
»Academy »Gothenburg »Medicine »Sahlgrenska »Swedish

“This result is particularly important, because we know that a bone with a large circumference is more durable and resistant to fractures than a narrower bone,” says Nilsson.

The researchers also studied bone density throughout the body in around 500 randomly selected 75-year-old men. Those who had done competitive sports three or more times a week at some point between the ages of 10 and 30 had higher bone density in several parts of the body than those who had not. The researchers have therefore established that there is a positive link between exercise while young and bone density and size. The connection is even stronger if account is taken of the type of sports done.

“The bones respond best when you’re young, and if you train and load them with your own bodyweight during these years, it has a stimulating effect on their development,” says Nilsson. “This may be important for bone strength much later in life too, so reducing the risk of brittle bones.”

OSTEOPOROSIS
Osteoporosis, or brittle bone disease, is very common in Sweden. Osteoporotic fractures affect one in two Swedish women and one in five Swedish men at some point in life. Brittle bones cause 70,000 fractures in Sweden annually, costing the health service almost SEK 5 billion a year. These fractures often result in reduced function and considerable suffering for the patients concerned.
For more information, please contact:
Registered physiotherapist and doctoral student Martin Nilsson, Institute of Medicine, Sahlgrenska Academy, tel: +46 (0)31 342 2964, mobile: +46 (0)76 871 9035, e-mail: martin.nilsson@medic.gu.se
Thesis for the degree of Doctor of Philosophy (Medicine) at the Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy.
Title of thesis: The role of physical activity on bone density and bone geometry in men

The thesis will be defended at 9 pm on Friday 16 April in the Arvid Carlsson lecture theatre, Academicum, Medicinaregatan 3, Gothenburg.

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/21868
http://www.gu.se/

Further reports about: Academy Gothenburg Medicine Sahlgrenska Swedish

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>