Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise helps protect brain of multiple sclerosis patients

19.02.2010
Highly fit multiple sclerosis patients perform significantly better on tests of cognitive function than similar less-fit patients, a new study shows.

In addition, MRI scans of the patients showed that the fitter MS patients showed less damage in parts of the brain that show deterioration as a result of MS, as well as a greater volume of vital gray matter.

“We found that aerobic fitness has a protective effect on parts of the brain that are most affected by multiple sclerosis,” said Ruchika Shaurya Prakash, lead author of the study and assistant professor of psychology at Ohio State University.

“As a result, these fitter patients actually show better performance on tasks that measure processing speed.”

The study, done with colleagues Robert Motl and Arthur Kramer of the University of Illinois and Erin Snook of the University of Massachusetts, Amherst, appears online in the journal Brain Research and will be published in a future print edition.

The study involved 21 women diagnosed with relapsing-remitting MS. They were compared with 15 age- and education-matched healthy female controls. The study assessed fitness, cognitive function, and structural changes in all participants.

In order to measure fitness levels, the participants underwent a VO2 max test, in which they rode a stationary bicycle until they felt exhausted. During the test, they breathed into a mask which measured their oxygen consumption.

All the women also took a variety of tests designed to evaluate cognitive functions, such as processing speed and selective attention. In one test, for example, participants had to write down in one minute as many words as they could think of that began with the letter “F.” MS patients generally perform poorly on these tests compared to healthy people.

The third analysis involved MRIs of the participants, revealing any damage to their brains.

As expected, the MS patients did much worse than the healthy controls on the tests of brain functioning, and showed more deterioration in their brains as revealed through the MRIs.

But what was interesting, Prakash said, was the significant differences between the more aerobically fit MS patients and those who were less fit.

Take, for instance, lesions, which are the characteristic feature of MS. Lesions are areas of inflammation in the central nervous system in which neurons have been stripped of myelin, an insulating protein.

“Physically fit MS patients had fewer lesions compared to those who weren’t as fit and the lesions they did have tended to be smaller,” Prakash said. “This is significant and can help explain why the higher-fit patients did better on tests of brain functioning.”

Aerobic fitness was also associated with less-damaged brain tissue in MS patients, both the gray matter and white matter.

Gray matter is the cell bodies in the brain tissue, while white matter is the fibers that connect the various gray matter areas.

The study found that fitness in MS patients was associated with larger volume of gray matter, accounting for about 20 percent of the volume in gray matter. That’s important, Prakash said, because gray matter is linked to brain processing skills.

“Even in gray matter that appeared relatively healthy, we found a deterioration in the volume in MS patients,” she said. “But for some of the highest fit MS patients, we found that their gray matter volume was nearly equivalent to that of healthy controls.”

Another MRI analysis involved the integrity of the white matter in the brain. In MS patients, the white matter deteriorates as the myelin is stripped from neurons. Again, higher-fit MS patients showed less deterioration of white matter compared to those who were less fit.

Overall, the three MRI tests in this study showed that parts of the brain involved in processing speed are all negatively affected by MS – but less so in patients who are aerobically fit.

Prakash noted that other researchers have found that exercise promotes the production of nerve growth factors, proteins which are important for the growth and maintenance of neurons in the brain.

“Our hypothesis is that aerobic exercise enhances these nerve growth factors in MS patients, which increases the volume of the gray matter and increases the integrity of the white matter,” she said.

“As a result there is an improvement in cognitive function.”

Prakash and her colleagues plan to extend this research by studying whether exercise interventions with MS patients can actually improve their cognition and have positive physical effects on the brain.

“For a long time, MS patients were told not to exercise because there was a fear it could exacerbate their symptoms,” she said.

“But we’re finding that if MS patients exercise in a controlled setting, it can actually help them with their cognitive function.”

The research was supported by a grant from the National Institute on Aging.

Contact: Ruchika Shaurya Prakash, (614) 292-8462; Prakash.30@osu.edu
Written by Jeff Grabmeier, (614) 292-8457; Grabmeier.1@osu.edu

Ruchika Shaurya Prakash | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: MRI MRI scan brain function brain tissue cognitive function exercise

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>