Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution-proof insecticides may stall malaria forever

08.04.2009
Killing just the older mosquitoes would be a more sustainable way of controlling malaria, according to entomologists who add that the approach may lead to evolution-proof insecticides that never become obsolete.

Each year malaria -- spread through mosquito bites -- kills about a million people, but many of the chemicals used to kill the insects become ineffective. Repeated exposure to an insecticide breeds a new generation of mosquitoes that are resistant to that particular insecticide.

"Insecticides sprayed on house walls or bed nets are some of the most successful ways of controlling malaria," said Andrew Read, professor of biology and entomology, Penn State. "But they work by killing the insects or denying them the human blood they turn into eggs. This imposes an enormous selection in favor of insecticide-resistant mosquitoes."

Read and his colleagues Matthew Thomas, professor of entomology, Penn State, and Penelope Lynch, doctoral student, Open University, UK, argue that insecticides -- chemical or biological -- that kill only older mosquitoes are a more sustainable way to fight the deadly disease.

"If we killed only older mosquitoes we could control malaria and solve the problem of resistant mosquitoes," said Read. "This could be done by changing the way we use existing insecticides, even by simply diluting them," he added.

Aging mosquitoes are easier to kill with insecticides like DDT but new generation pesticides could do it too. Read and his colleagues are working with a biopesticide that kills older mosquitoes.

"It is one of the great ironies of malaria," explained Read, whose team's findings appear today (April 7) in PLoS Biology. "Most mosquitoes do not live long enough to transmit the disease. To stop malaria, we only need to kill the old mosquitoes."

Since most mosquitoes die before they become dangerous, late-acting insecticides will not have much impact on breeding, so there is much less pressure for the mosquitoes to evolve resistance, explained Read, who is also associated with the Penn State Center for Infectious Disease Dynamics. "This means that late-life insecticides will be useful for much, much longer -- maybe forever -- than conventional insecticides," he added. "Insects usually have to pay a price for resistance, and if only a few older mosquitoes gain the benefits, evolutionary economics can stop resistance from ever spreading."

"We are working on a fungal pesticide that kills mosquitoes late in life," said Thomas. "We could spray it onto walls or onto treated materials such as bed nets, from where the mosquito would get infected by the fungal spores." The fungi take 10 to 12 days to kill the insects. This achieves the benefit of killing the old, dangerous mosquitoes, while dramatically reducing the selection for the evolution of resistance, Thomas explained.

To study the impact of late-acting insecticides on mosquito populations, the researchers constructed a mathematical model of malaria transmission using factors such as the egg laying cycle of the mosquito and the development of parasites within the insect.

Once malaria parasites infect a mosquito, they need at least 10 to 14 days -- or two to six cycles of egg production -- to mature and migrate to the insect's salivary glands. From there they can pass into humans when a mosquito bites.

Analyses of the model using data on mosquito lifespan and malaria development from hotspots in Africa and Papua New Guinea reveal that insecticides killing only mosquitoes that have completed at least four cycles of egg production reduce the number of infectious bites by about 95 percent.

Critically, the researchers also found that resistance to late-acting insecticides spreads much more slowly among mosquitoes, compared to conventional insecticides, and that in many cases, it never spreads at all.

Read says the development of biological or chemical insecticides that are more effective against older, malaria-infected mosquitoes could save the millions dollars that will have to be spent to endlessly find new insecticides to replace ones that have become ineffective.

"Insecticides that kill indiscriminately impose maximal selection for mosquitoes that render those insecticides useless. Late-life acting insecticides would avoid that fate," Read added. "Done right, a one-off investment could create a single insecticide that would solve the problem of mosquito resistance forever."

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>