Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Evidence of an Unrecognized Visual Process

02.12.2011
We don’t see only what meets the eye. The visual system constantly takes in ambiguous stimuli, weighs its options, and decides what it perceives. This normally happens effortlessly. Sometimes, however, an ambiguity is persistent, and the visual system waffles on which perception is right. Such instances interest scientists because they help us understand how the eyes and the brain make sense of what we see.

Most scientists believe rivalry occurs only when there’s “spatial conflict”—two objects striking the same place on the retina at the same time as our eyes move. But the retina isn’t the only filter or organizer of visual information. There’s also the “non-retinal reference frame”—objects such as mountains or chairs that locate things in space and make the world appear stable even when our eyes are moving.

“We asked: what if visual ambiguities are not presented on the same spot on the retina, but on the objects [in the frame] as they move around,” says California Institute of Technology cognitive scientist Jeroen J.A. van Boxtel. Indeed, he and colleague Christof Koch found evidence of rivalry in this reference frame, with surprising effects on the better-understood spatial conflict. The findings, which will appear in an upcoming issue of Psychological Science, a journal published by the Association of Psychological Science, offer intriguing clues to how the visual system works.

In their experiments, van Boxtel and Koch created spatial conflict with a “motion quartet,” which changes the arrangement of four dots. If the dots are displaced in certain ways, the visual system isn’t sure if the movement is vertical or horizontal. If the dots move to an altogether different space, there’s no rivalry. Then the researchers upped the perceptual ante by creating an object reference frame with three white discs and shifting it, too, along with or in opposition to the smaller dots.

Seven male and female participants viewed the changing arrangements in four conditions. In one, both dots and discs remained stationary (creating spatial rivalry); in each of two, either dots or discs moved right or left; in the fourth, both moved horizontally together (creating ambiguity in the frame). Each time, participants had to press a button indicating whether the dots moved horizontally or vertically. The presses were analyzed for perceived movement “bias” (more horizontal or vertical) and duration—evidence either of rivalry or visual clarity.

The results: Even when the dots moved to another space altogether—so there was no spatial conflict—the moving discs created the effect of perceptual ambiguity. But the researchers also found that visual rivalry disappeared when the dots were stationary and the disks moved (that is, the dots were not linked to the disks). It was as if the brain had bigger fish—object-frame rivalry—to fry.

In subsequent experiments—one changing the vertical relationship of the dots and one placing the dots outside the white discs—the researchers got results similar to those they would have gotten without the frame. Their conclusion: The visual system is working out object-frame rivalry as it would spatial rivalry, probably with the same brain regions and processes.

For more information about this study, please contact: Jeroen J. A. van Boxtel at j.j.a.vanboxtel@gmail.com.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Visual rivalry without spatial conflict" and access to other Psychological Science research findings, please contact Divya Menon at 202-293-9300 or dmenon@psychologicalscience.org.

Divya Menon | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>