Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence mounts for role of mutated genes in development of schizophrenia

22.01.2013
Johns Hopkins study links 1 family's rare gene mutation to brain cell abnormality and mental illness

Johns Hopkins researchers have identified a rare gene mutation in a single family with a high rate of schizophrenia, adding to evidence that abnormal genes play a role in the development of the disease.

The researchers, in a report published in the journal Molecular Psychiatry, say that family members with the mutation in the gene Neuronal PAS domain protein 3 (NPAS3) appear at high risk of developing schizophrenia or another debilitating mental illnesses.

Normally functioning NPAS3 regulates the development of healthy neurons, especially in a region of the brain known as the hippocampus, which appears to be affected in schizophrenia. The Johns Hopkins researchers say they have evidence that the mutation found in the family may lead to abnormal activity of NPAS3, which has implications for brain development and function.

"Understanding the molecular and biological pathways of schizophrenia is a powerful way to advance the development of treatments that have fewer side effects and work better than the treatments now available," says study leader Frederick C. Nucifora Jr., Ph.D., D.O., M.H.S., an assistant professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine. "We could definitely use better medicines."

Along with environmental factors, it is widely believed that many genes play some role in causing schizophrenia, a disease characterized by a variable combination of hallucinations, delusions, impaired cognition and a loss of drive and initiative. The disorder strikes an estimated seven in every 1,000 adults in the United States. While the Johns Hopkins experiments to date show that the NPAS3 mutation is rare, Nucifora says learning as much as possible about the biological role of NPAS3 will likely lead to a better understanding of how other genes contribute to the development of schizophrenia, even in the absence of the NPAS3 mutation.

For the study, Nucifora and his team used blood samples to search the DNA of 34 people with schizophrenia or a related condition, schizoaffective disorder. All 34 were members of families in which more than one person had the disease. The investigators were specifically looking for NPAS3 mutations — previous research suggested it could be involved in schizophrenia — and found it in one of the families.

By analyzing blood samples from that single family — two parents and four adult children — they found that the mother, who has schizophrenia, her two children with schizophrenia, and her child with major depression all had the mutant version of NPAS3. The NPAS3 gene provides instructions for the production of a protein that contains 933 amino acids. The altered gene led to a single flaw: a valine was switched to an isoleucine. Nucifora says it is not yet known how this single mutation affects the function or structure of NPAS3. A possible hint comes from the finding of other investigators that a change from valine to isoleucine in a protein known as APP is linked to Alzheimer's disease.

Nucifora cautions that, by itself, finding a mutation in a single family with mental illness doesn't establish the altered gene as the cause of the illness. Nucifora and his colleagues therefore set out to determine whether the mutation plays any role in the function of NPAS3, which serves as a master switch in cells, controlling the fate of many other genes involved in brain development and metabolism.

To do that, Nucifora and his colleagues grew neurons with either normal or mutated copies of NPAS3 in a dish, and found that the healthy neurons grew nice long extensions, a process that typically allows them to make good connections with other cells and is therefore critical for brain function. In neurons with the mutated gene, the extensions were abnormally short.

Other genes believed to be involved in mental illness also have been found to disrupt the growth of longer neuronal extensions.

"We showed that the mutation does change the function of NPAS3, with potentially harmful effects in neurons," he says. "The next step is to figure out exactly how the genetic disruption alters neuronal function, and how these abnormal neurons influence the broader function of the brain."

Nucifora and his team are now working to create a mouse with the NPAS3 mutation. "If this mutation in NPAS3 is indeed important for human disease, then we should detect abnormalities in the neurons of mice with mutant NPAS3, and the mice should have impairments in learning, memory and social behavior," he says.

The research was supported by the Brain & Behavior Research Foundation NARSAD Young Investigator Grant, the Milton and Tamar Maltz Family Foundation and the Hatten S. Yoder III Memorial Fellowship.

Other Johns Hopkins researchers involved in the study include Lan Yu, Ph.D.; Nicolas Arbez, Ph.D.; Leslie G. Nucifora, Ph.D.; Gabrielle L. Sell, B.S.; Christopher A. Ross, M.D., Ph.D.; and Russell L. Margolis, M.D.

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>