Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Estrogen may help precancerous cells spread in oral cavity

04.01.2011
Head and neck cancer is the sixth most common type of cancer and is on the rise in some demographic groups, including young women without any known risk factors. Now, researchers at Fox Chase Cancer Center report that estrogen may increase the movement of precancerous cells in the mouth and thus promote the spread of the disease within the oral cavity.

The new results, published in the January issue of Cancer Prevention Research, a journal of the American Association for Cancer Research, may lead to novel chemoprevention strategies in the future.

Margie Clapper, Ph.D., co-leader of the Cancer Prevention and Control Program at Fox Chase Cancer Center and Cancer Prevention Research editorial board member, and colleagues had previously reported that estrogen metabolism changes following smoke exposure in the lungs and may contribute to lung cancer. This study on estrogen and lung cancer first appeared in the June 3, 2010, issue of Cancer Prevention Research.

To find out if this female hormone influences development of head and neck cancer, Ekaterina Shatalova, Ph.D., a postdoctoral fellow at Fox Chase Cancer Center and researcher on this study, examined the impact of estrogen on precancerous and cancerous cells.

They found that estrogen induces the expression of an enzyme called cytochrome P450 1B1 (CYP1B1), which is responsible for breaking down toxins and metabolizing estrogen. Interestingly, CYP1B1 induction occurred only in precancerous cells, which are neither totally normal nor cancerous. Surprisingly, estrogen did not induce CYP1B1 in cancer cells.

With closer investigation, the researchers found that depleting the expression of CYP1B1 diminished the ability of precancerous cells to move and divide, as compared to similar cells with normal levels of CYP1B1. Estrogen also reduced cell death in the precancerous cells, irrespective of the amount of CYP1B1 present.

"In the future, we would like to find a natural or dietary agent to deplete the CYP1B1 enzyme and see if we can prevent oral cancer at the precancerous stage," said Shatalova.

"Our previous studies showed that the CYP1B1 enzyme sits at the hub of changes that occur in the lungs after smoke exposure. We were now able to look at its role in a more direct fashion by removing it from precancerous cells of the oral cavity," Clapper said. "We found that cells lacking it move slower. CYP1B1 could be a wonderful target in precancerous lesions of the head and neck, because by attacking it, we might stop these lesions from progressing or moving to a more advanced stage."

In addition, patients diagnosed with head and neck cancer are at a high risk of developing a second primary tumor, which is associated with poorer overall survival. Finding a way to reduce these subsequent tumors could improve patients' survival.

These results may help researchers to "understand factors that cause head and neck cancer, in addition to the traditional risk factors of tobacco and alcohol exposure," said Jennifer R. Grandis, M.D., professor and director of the Head and Neck Cancer Program at the University of Pittsburgh School of Medicine, and an editorial board member for Cancer Prevention Research.

However, because these results are limited to a single premalignant cell line, said Grandis, further studies are needed to validate these findings in head and neck cancer in a human population.

The mission of the American Association for Cancer Research is to prevent and cure cancer. Founded in 1907, the AACR is the world's oldest and largest professional organization dedicated to advancing cancer research. The membership includes 33,000 basic, translational and clinical researchers; health care professionals; and cancer survivors and advocates in the United States and more than 90 other countries. The AACR marshals the full spectrum of expertise from the cancer community to accelerate progress in the prevention, diagnosis and treatment of cancer through high-quality scientific and educational programs. It funds innovative, meritorious research grants, research fellowships and career development awards. The AACR Annual Meeting attracts more than 18,000 participants who share the latest discoveries and developments in the field. Special conferences throughout the year present novel data across a wide variety of topics in cancer research, treatment and patient care. Including Cancer Discovery, the AACR publishes seven major peer-reviewed journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; Cancer Epidemiology, Biomarkers & Prevention; and Cancer Prevention Research. AACR journals represented 20 percent of the market share of total citations in 2009. The AACR also publishes CR, a magazine for cancer survivors and their families, patient advocates, physicians and scientists.

Tara Yates | EurekAlert!
Further information:
http://www.aacr.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>