Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Esophageal function implicated in life-threatening experiences in infants, study suggests

28.03.2014

About 1 percent of all emergency room visits are prompted by near-death experiences in infants, such as extended periods without breathing or sudden changes in skin pallor or muscle tone. What causes these frightening experiences is often unknown, but the result can be long hospital stays and neurological impairment.

Now, a study of these apparent life-threatening events — called ALTEs for short — suggests that infants who experience them have abnormal regulation of esophageal and airway function compared to healthy babies. The findings, published online March 28 in the Journal of Pediatrics by a team in The Research Institute at Nationwide Children's Hospital, offer new information about the mechanisms behind ALTEs and what clinicians and parents can do to avoid them.

The research, led by Sudarshan Jadcherla, MD, principal investigator in the Center for Perinatal Research, compared 10 infants who experienced an ALTE and 10 healthy babies using innovative tools that track the concurrent functions of the infants' upper digestive tracts and airways. They found that infants with a previous near-death experience were more likely to have pauses in breathing, gasping breaths, less effective upper airway protection, delays in clearing their airways and difficulty coordinating swallowing and respiratory interactions.

"Previously, these life-threatening events were thought to be due to gastroesophageal reflux disease (GERD), and acid-suppressive treatment for that was often begun," says Dr. Jadcherla, who is also the director of the Neonatal and Infant Feeding Disorders Program and the Neonatal Aerodigestive Pulmonary Program at Nationwide Children's. "But our study identifies the dysfunctions in the aerodigestive tract — instead of GERD-centered mechanisms — as the real therapeutic targets for these babies."

Evaluating and accommodating these problems of esophageal function instead of initiating GERD medication (unless there is specific evidence of the condition) may be the key to preventing future near-death events for at-risk infants, he suggests.

"These infants' respiratory limitations are generally due to immaturity of functional neural networks involved with swallowing and airway safety," Dr. Jadcherla says. "The treatment for managing them is patience and perseverance with the quality of oral feeding."

The researchers used manometry — a pressure-sensitive tube inserted through the nose and into the esophagus — to measure muscle contractions, swallowing, reflex strength and gastroesophageal reflux in all 20 participants. Infants with ALTE were slower to get back to normal aerodigestive regulation after an esophageal event (such as swallowing or gastroesophageal reflux), with a higher proportion of failed muscle contraction in the esophagus, more frequent episodes of pauses in breathing and more gasping breaths.

"For infants with esophageal function difficulties, proper positioning, proper feeding methods, taking time with the baby during oral feeding and allowing time for maturation to heal their problems are essential to protecting these babies from ALTEs," Dr. Jadcherla says. "We need to be patient in the care of such vulnerable little patients."

Understanding the causes of and treatments for near-death events in infants may also shed light on aerodigestive protective mechanisms implicated in some cases of sudden infant death syndrome, or SIDS.

"Gasping can be a mechanism for self-resuscitation when associated with swallowing, restoring respiratory normalcy," says Dr. Jadcherla, also a professor of pediatrics at The Ohio State University College of Medicine. "Although there can be many theories for death in any given infant with SIDS, the precise mechanisms or therapeutic targets in such infants when they are alive remain elusive. Understanding the aerodigestive mechanisms in the context of airway protection and feeding safety may offer hope."

Gina Bericchia | EurekAlert!

Further reports about: SIDS airway death esophageal function healthy infants life-threatening mechanism protective

More articles from Health and Medicine:

nachricht Discovery of a novel gene for hereditary colon cancer
29.07.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New evidence: How amino acid cysteine combats Huntington's disease
27.07.2016 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>