Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Esophageal function implicated in life-threatening experiences in infants, study suggests

28.03.2014

About 1 percent of all emergency room visits are prompted by near-death experiences in infants, such as extended periods without breathing or sudden changes in skin pallor or muscle tone. What causes these frightening experiences is often unknown, but the result can be long hospital stays and neurological impairment.

Now, a study of these apparent life-threatening events — called ALTEs for short — suggests that infants who experience them have abnormal regulation of esophageal and airway function compared to healthy babies. The findings, published online March 28 in the Journal of Pediatrics by a team in The Research Institute at Nationwide Children's Hospital, offer new information about the mechanisms behind ALTEs and what clinicians and parents can do to avoid them.

The research, led by Sudarshan Jadcherla, MD, principal investigator in the Center for Perinatal Research, compared 10 infants who experienced an ALTE and 10 healthy babies using innovative tools that track the concurrent functions of the infants' upper digestive tracts and airways. They found that infants with a previous near-death experience were more likely to have pauses in breathing, gasping breaths, less effective upper airway protection, delays in clearing their airways and difficulty coordinating swallowing and respiratory interactions.

"Previously, these life-threatening events were thought to be due to gastroesophageal reflux disease (GERD), and acid-suppressive treatment for that was often begun," says Dr. Jadcherla, who is also the director of the Neonatal and Infant Feeding Disorders Program and the Neonatal Aerodigestive Pulmonary Program at Nationwide Children's. "But our study identifies the dysfunctions in the aerodigestive tract — instead of GERD-centered mechanisms — as the real therapeutic targets for these babies."

Evaluating and accommodating these problems of esophageal function instead of initiating GERD medication (unless there is specific evidence of the condition) may be the key to preventing future near-death events for at-risk infants, he suggests.

"These infants' respiratory limitations are generally due to immaturity of functional neural networks involved with swallowing and airway safety," Dr. Jadcherla says. "The treatment for managing them is patience and perseverance with the quality of oral feeding."

The researchers used manometry — a pressure-sensitive tube inserted through the nose and into the esophagus — to measure muscle contractions, swallowing, reflex strength and gastroesophageal reflux in all 20 participants. Infants with ALTE were slower to get back to normal aerodigestive regulation after an esophageal event (such as swallowing or gastroesophageal reflux), with a higher proportion of failed muscle contraction in the esophagus, more frequent episodes of pauses in breathing and more gasping breaths.

"For infants with esophageal function difficulties, proper positioning, proper feeding methods, taking time with the baby during oral feeding and allowing time for maturation to heal their problems are essential to protecting these babies from ALTEs," Dr. Jadcherla says. "We need to be patient in the care of such vulnerable little patients."

Understanding the causes of and treatments for near-death events in infants may also shed light on aerodigestive protective mechanisms implicated in some cases of sudden infant death syndrome, or SIDS.

"Gasping can be a mechanism for self-resuscitation when associated with swallowing, restoring respiratory normalcy," says Dr. Jadcherla, also a professor of pediatrics at The Ohio State University College of Medicine. "Although there can be many theories for death in any given infant with SIDS, the precise mechanisms or therapeutic targets in such infants when they are alive remain elusive. Understanding the aerodigestive mechanisms in the context of airway protection and feeding safety may offer hope."

Gina Bericchia | EurekAlert!

Further reports about: SIDS airway death esophageal function healthy infants life-threatening mechanism protective

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>