Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme protein eight times more effective against pain than morphine

09.10.2008
More people suffer from pain than from heart diseases, diabetes or cancer combined. Research teams at the University of Helsinki and the University of North Carolina have discovered a new powerful painkiller that has shown no side effects in mouse testing.

The enzyme protein found naturally in the body alleviated pain eight times more effectively than morphine. Research findings are published this week as the cover story of the esteemed Neuron journal.

Professor Pirkko Vihko from the Department of Biological and Environmental Sciences of the University of Helsinki has conducted research on the Prostatic Acid Phosphatase (PAP) enzyme for more than 30 years. As the name indicates, the prostate contains plenty of this enzyme.

Last year, Vihko's research team described the membrane form of the enzyme and showed that it is present not only in the prostate, but in many other cells and organs as well. The PAP enzyme exists, for example, in pain-sensing nerves, but it has disappeared from damaged nerves.

For the research project presented in the Neuron journal, Vihko and her team prepared a knockout mouse model with the PAP enzyme knocked out. Together with Mark Zylka's team from the University of North Carolina they showed that these mice had an increased sensitivity for pain caused by inflammation and neural damage. The reason for the sensitivity was the lack of the PAP enzyme. Enzyme protein replacement treatment removed pain effectively – eight times more so than morphine. Clinical research will begin next.

Research teams also determined the mechanism that the acid phosphatase of the prostate uses to regulate pain alleviation. In an organism, the enzyme generates adenosine that controls the experience of pain through the adenosine receptor. Vihko’s team will prepare new publications that describe the entirely new effective areas of the enzyme.

Kirsikka Mattila | alfa
Further information:
http://www.neuron.org/

Further reports about: Cancer Diabetes Enzym Enzyme protein Neuron Painkiller morphine prostate

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>