Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme BACE1 may be important in predicting onset of Alzheimer disease

12.12.2013
Elevated BACE1 activity in mild cognitive impairment could be early indicator of Alzheimer disease, according to new research published in the American Journal of Pathology

The critical enzyme beta-secretase1 (BACE1) is known to be elevated in brains with sporadic Alzheimer disease (AD). Scientists have now found increased levels of BACE1 in brains with mild cognitive impairment (MCI), suggesting that BACE1 activity is important for conversion of mild cognitive impairment to AD and may be an early indicator of AD. The results are published in the January issue of The American Journal of Pathology.

Understanding the early events of AD is key to effective diagnosis and treatment. Two of the major pathological characteristics of AD are neuritic plaques and neurofibrillary tangles, which are used to diagnose or confirm AD at autopsy. Neuritic plaques, which are also known as senile, dendritic, or amyloid plaques, consist of deteriorating neuronal material surrounding deposits of a sticky protein called amyloid beta peptide (Aâ). Neurofibrillary tangles consist of highly phosphorylated forms of the microtubule-associated protein tau.

Following on earlier discoveries that BACE1 activity and protein expression are significantly increased in AD brains, researchers have now found raised levels of BACE1 enzymatic activity in brain tissue from patients with MCI, a precursor to AD. BACE1, also known as â-site amyloid precursor protein cleaving enzyme, is an aspartic protease and is a critical enzyme that promotes Aâ generation.

In the current study, researchers examined autopsied brain tissue from 18 patients with clinically well-characterized AD, 18 patients with MCI, and 18 non-demented patients. They found that BACE1 enzymatic activity was significantly increased in both MCI and AD brains. In 11 of 18 MCI patients, who had undergone a mini-mental state examination (MMSE) before death, the brain cortex BACE1 levels increased during early dementia followed by a precipitous decrease as the decline in cognition progressed. Increased BACE1 activity correlated with plaque numbers and cognition status. Interestingly, they also observed that there was no significant difference in BACE1 activity between MCI and AD.

The researchers also found an increase in tumor necrosis factor alpha (TNFá) in MCI brains. TNFá is an inflammatory cytokine or cell signaling protein required for amyloid protein induced neuronal death. Biochemical examination of the autopsy tissue showed that TNFá rather than other cytokines increases the response to BACE1 protein expression. The increased levels of TNFá in MCI and AD patients were not significantly different from each other.

"There is more and more evidence that BACE1 is intricately involved in the development of AD," says the study's lead investigator Yong Shen, PhD, of the Center for Advanced Therapeutic Strategies for Brain Disorders at Roskamp Institute, Sarasota, Florida. "Our previous studies have demonstrated elevated BACE1 enzymatic activity in AD brains and in the cerebrospinal fluid from MCI and AD patients. Our findings here suggest that BACE1 increases early in the course of MCI and is possibly induced by inflammatory molecules like TNFá and that BACE1 enzymatic activity may be important for conversion of MCI to AD. Importantly, we found that the BACE1 activity in tissue from people with MCI was significantly increased by 27%, compared with that from people with no dementia.

"We believe that BACE1 activity precedes the clinical diagnosis of AD and could be an early indicator of neuronal dysfunction or pathology in AD. Moreover, it may be a good therapeutic target for AD, as evidenced by recent promising clinical trials on BACE1 inhibitors," he concludes.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>