Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Entry point for hepatitis C infection identified

25.01.2012
A molecule embedded in the membrane of human liver cells that aids in cholesterol absorption also allows the entry of hepatitis C virus, the first step in hepatitis C infection, according to research at the University of Illinois at Chicago College of Medicine.

The cholesterol receptor offers a promising new target for anti-viral therapy, for which an approved drug may already exist, say the researchers, whose findings were reported online in advance of publication in Nature Medicine.

An estimated 4.1 million Americans are infected with hepatitis C virus, or HCV, which attacks the liver and leads to inflammation, according to the National Institutes of Health. Most people have no symptoms initially and may not know they have the infection until liver damage shows up decades later during routine medical tests.

Previous studies showed that cholesterol was somehow involved in HCV infection. The UIC researchers suspected that a receptor called NPC1L1, known to help maintain cholesterol balance might also be transporting the virus into the cell.

The receptor is common in the gut of many species -- but is found on liver cells only in humans and chimpanzees, says Susan Uprichard, assistant professor in medicine and microbiology and immunology and principal investigator in the study. These primates, she said, are the only animals that can be infected by HCV.

Uprichard and her coworkers showed that knocking down or blocking access to the NPC1L1 receptor prevented the virus from entering and infecting cells.

Bruno Sainz, Jr., UIC postdoctoral research associate in medicine and first author of the paper, said because the receptor is involved in cholesterol metabolism it was already well-studied. A drug that "specifically and uniquely targets NPC1L1" already exists and is approved for use to lower cholesterol levels, he said.

The FDA-approved drug ezetimibe (sold under the trade-name Zetia) is readily available and perfectly targeted to the receptor, Sainz said, so the researchers had an ideal method for testing NPC1L1's involvement in HCV infection.

They used the drug to block the receptor before, during and after inoculation with the virus, in cell culture and in a small-animal model, to evaluate the receptor's role in infection and the drug's potential as an anti-hepatitis agent.

The researchers showed that ezetimibe inhibited HCV infection in cell culture and in mice transplanted with human liver cells. And, unlike any currently available drugs, ezetimibe was able to inhibit infection by all six types of HCV.

The study, Uprichard said, opens up a number of possibilities for therapeutics.

Hepatitis C is the leading cause for liver transplantation in the U.S., but infected patients have problems after transplant because the virus attacks the new liver, Uprichard said.

While current drugs are highly toxic and often cannot be tolerated by transplant patients taking immunosuppressant drugs, ezetimibe is quite safe and has been used long-term without harm by people to control their cholesterol, Uprichard said. Because it prevents entry of the virus into cells, ezetimibe may help protect the new liver from infection.

For patients with chronic hepatitis C, ezetimibe may be able to be used in combination with current drugs.

"We forsee future HCV therapy as a drug-cocktail approach, like that used against AIDS," Uprichard said. "Based on cell culture and mouse model data, we expect ezetimibe, an entry inhibitor, may have tremendous synergy with current anti-HCV drugs resulting in an improvement in the effectiveness of treatment."

The study was supported by NIH Public Health Service grants, the American Cancer Society Research Scholar grant, the UIC Center for Clinical and Translational Science NIH grant, the UIC Council to Support Gastrointestinal and Liver Disease, and a grant from the Ministry of Health, Labor and Welfare of Japan.

Naina Barretto, Danyelle Martin, Snawar Hussain, Katherine Marsh and Xuemei Yu, of UIC; Nobuhiko Hiraga, Michio Imamura and Kazuaki Chayama, of Hiroshima University in Japan; and Waddah Alrefai of UIC and the Jesse Brown VA Medical Center in Chicago also contributed to the study.

[Editor's Note: Images available at newsphoto.lib.uic.edu/v/uprichard/]

For more information about the University of Illinois Medical Center, visit www.uillinoismedcenter.org

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>