Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced treatment of brain tumors

24.11.2011
Glioblastoma is regarded as the most malignant form of brain tumor. In many cases, neurosurgeons are not able to remove such tumors completely because of the risk of destroying too much brain tissue in the process.

Moreover, it is often impossible to identify all the fine extensions by which the tumor spreads into surrounding healthy tissue. To at least slow down the growth of tumor cells that have remained in the head, almost all glioblastoma patients are treated by radiotherapy after surgery.

"Unfortunately, we can only delay cancerous growth in this way, but we cannot cure patients. The tumor cells, especially the cancer stem cells, are very resistant to radiation," says Prof. Dr. Dr. Peter Huber, who is head of the Clinical Cooperation Unit 'Radiation Oncology' at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ).

Studies conducted in recent years found that response to radiation therapy in various cancers is better when certain types of cellular growth factors are blocked at the same time. Glioblastoma cells often produce large amounts of a growth factor called TGF-β (transforming growth factor beta). High levels of TGF-β in these tumors are correlated with particularly aggressive growth and a poor prognosis. In addition, the factor seems to support the self-renewal capability of glioblastoma stem cells. "We therefore suspect that blocking TGF-β signaling pathways slows down the self-renewal of cancer stem cells and, thus, may improve radiation treatment outcomes," Peter Huber adds, explaining the background of the study now published.

In collaboration with colleagues from, among others, the Radiology Department of Heidelberg University Hospitals and a DKFZ department led by Prof. Dr. Ana Villalba, Huber's team investigated the effect of a combination of radiation treatment and a newly developed substance called LY2109761. This substance blocks the signals that are transmitted into cells by the TGF-β receptor. The investigators first studied glioblastoma cells in tissue samples taken during surgical removal of the tumors. Irradiation combined with adding the substance reduced the self-renewal capability of tumor stem cells and delayed their growth significantly better than radiation treatment alone.

The group transplanted human glioblastoma cells into the brains of mice and found that these animals, after receiving the combination therapy, survived longer than those animals treated by radiotherapy alone. Tissue studies showed that, under the combination therapy, tumors grew more slowly and less invasively and showed a lower density of newly formed blood vessels. "Paradoxically, radiation therapy can provoke aggressive growth behavior in surviving tumor cells. LY2109761 seems to prevent this fatal effect," says Huber, explaining how the drug seems to work.

Blocking of TGF-β signaling produced such promising results that researchers will now conduct a multicenter clinical trial to find out whether this mechanism may also slow down glioblastoma growth in patients more effectively than the current standard treatment. Led by Prof. Dr. Wolfgang Wick, who is head of a collaboration unit of DKFZ and the Neurology Department of Heidelberg University Hospitals, the combination therapy will be tested in Germany (Heidelberg), Spain, and the U.S.A.

Mengxian Zhang, Susanne Kleber, Manuel Röhrich, Carmen Timke, Na Han, Jochen Tuettenberg, Ana Martin-Villalba, Jürgen Debus, Peter Peschke, Ute Wirkner, Michael Lahn and Peter E. Huber: Blockade of TGF-beta signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Research 2011, DOI:10.1158/0008-5472.CAN-11-1212

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>