Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced treatment of brain tumors

24.11.2011
Glioblastoma is regarded as the most malignant form of brain tumor. In many cases, neurosurgeons are not able to remove such tumors completely because of the risk of destroying too much brain tissue in the process.

Moreover, it is often impossible to identify all the fine extensions by which the tumor spreads into surrounding healthy tissue. To at least slow down the growth of tumor cells that have remained in the head, almost all glioblastoma patients are treated by radiotherapy after surgery.

"Unfortunately, we can only delay cancerous growth in this way, but we cannot cure patients. The tumor cells, especially the cancer stem cells, are very resistant to radiation," says Prof. Dr. Dr. Peter Huber, who is head of the Clinical Cooperation Unit 'Radiation Oncology' at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ).

Studies conducted in recent years found that response to radiation therapy in various cancers is better when certain types of cellular growth factors are blocked at the same time. Glioblastoma cells often produce large amounts of a growth factor called TGF-β (transforming growth factor beta). High levels of TGF-β in these tumors are correlated with particularly aggressive growth and a poor prognosis. In addition, the factor seems to support the self-renewal capability of glioblastoma stem cells. "We therefore suspect that blocking TGF-β signaling pathways slows down the self-renewal of cancer stem cells and, thus, may improve radiation treatment outcomes," Peter Huber adds, explaining the background of the study now published.

In collaboration with colleagues from, among others, the Radiology Department of Heidelberg University Hospitals and a DKFZ department led by Prof. Dr. Ana Villalba, Huber's team investigated the effect of a combination of radiation treatment and a newly developed substance called LY2109761. This substance blocks the signals that are transmitted into cells by the TGF-β receptor. The investigators first studied glioblastoma cells in tissue samples taken during surgical removal of the tumors. Irradiation combined with adding the substance reduced the self-renewal capability of tumor stem cells and delayed their growth significantly better than radiation treatment alone.

The group transplanted human glioblastoma cells into the brains of mice and found that these animals, after receiving the combination therapy, survived longer than those animals treated by radiotherapy alone. Tissue studies showed that, under the combination therapy, tumors grew more slowly and less invasively and showed a lower density of newly formed blood vessels. "Paradoxically, radiation therapy can provoke aggressive growth behavior in surviving tumor cells. LY2109761 seems to prevent this fatal effect," says Huber, explaining how the drug seems to work.

Blocking of TGF-β signaling produced such promising results that researchers will now conduct a multicenter clinical trial to find out whether this mechanism may also slow down glioblastoma growth in patients more effectively than the current standard treatment. Led by Prof. Dr. Wolfgang Wick, who is head of a collaboration unit of DKFZ and the Neurology Department of Heidelberg University Hospitals, the combination therapy will be tested in Germany (Heidelberg), Spain, and the U.S.A.

Mengxian Zhang, Susanne Kleber, Manuel Röhrich, Carmen Timke, Na Han, Jochen Tuettenberg, Ana Martin-Villalba, Jürgen Debus, Peter Peschke, Ute Wirkner, Michael Lahn and Peter E. Huber: Blockade of TGF-beta signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Research 2011, DOI:10.1158/0008-5472.CAN-11-1212

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>