Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced cord blood stem cell transplants safe in long-term studies

19.04.2011
An innovative experimental treatment for boosting the effectiveness of stem-cell transplants with umbilical cord blood has a favorable safety profile in long-term animal studies, report scientists from Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center (BIDMC), and Children's Hospital Boston (CHB).

Analysis of long-term safety testing in nonhuman primates, published online by the journal Cell Stem Cell, revealed that, after one year following transplant, umbilical cord blood units treated with a signaling molecule called 16,16-dimethyl PGE2 reconstituted all the normal types of blood cells, and none of the animals receiving treated cord blood units developed cancer. Wolfram Goessling, MD, PhD, of Dana-Farber and Brigham and Women's Hospital, is the first author of the paper, and Trista North, PhD, of BIDMC is the senior author.

The results of long-term safety studies in mice were previously submitted to the Food and Drug Administration to gain permission for a Phase 1 clinical trial under an Investigational New Drug (IND) application. Principal investigator, Corey Cutler, MD, a Dana-Farber transplant specialist, initiated the trial in 2009 at Dana-Farber and the Massachusetts General Hospital. The IND is sponsored by Fate Therapeutics, Inc. of San Diego.

Goessling and North were post-doctoral fellows in the laboratory of co-author Leonard Zon, MD, a stem cell researcher at CHB and a scientific founder of Fate Therapeutics, when they hit upon 16,16-dimethyl PGE2 while looking for compounds that could regulate the production of hematopoietic stem cells. The initial testing made use of zebra fish models. Goessling commented that "this is the first time a compound discovered in zebra fish has received a nod from the FDA for a clinical trial."

One of the limitations of cord blood as a transplant source is the cells engraft, or "take," in the recipient's bone marrow more slowly than matched donor cells form bone marrow. In addition, there is a higher failure rate for cord blood transplants. Thus there is a need for ways to improve the speed and quality of cord blood transplantation.

The research was supported by funding from the Harvard Stem Cell Institute, the National Institutes of Health, and the Howard Hughes Medical Institute.

The other authors are Michael Dovey, PhD, and James M. Harris, BIDMC; Xiao Guan, PhD, and Thorsten Schlaeger, PhD, CHB; Joseph Stegner and Myriam Armant, PhD, Center for Human Cell Therapy, Immune Disease Institute, Boston; Ping Jin, PhD, and David Stroncek, MD, National Institutes of Health, Bethesda, Md.; Naoya Uchida, MD, and John F. Tisdale, MD, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md.; Robyn S. Allen, Robert E. Donahue, VMD, Mark E. Metzger, and Aylin C. Bonifacino, National Heart, Lung, and Blood Institute, Bethesda, Md.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and consistently ranks among the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bill Schaller | EurekAlert!
Further information:
http://www.bidmc.org

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>