Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced cord blood stem cell transplants safe in long-term studies

19.04.2011
An innovative experimental treatment for boosting the effectiveness of stem-cell transplants with umbilical cord blood has a favorable safety profile in long-term animal studies, report scientists from Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center (BIDMC), and Children's Hospital Boston (CHB).

Analysis of long-term safety testing in nonhuman primates, published online by the journal Cell Stem Cell, revealed that, after one year following transplant, umbilical cord blood units treated with a signaling molecule called 16,16-dimethyl PGE2 reconstituted all the normal types of blood cells, and none of the animals receiving treated cord blood units developed cancer. Wolfram Goessling, MD, PhD, of Dana-Farber and Brigham and Women's Hospital, is the first author of the paper, and Trista North, PhD, of BIDMC is the senior author.

The results of long-term safety studies in mice were previously submitted to the Food and Drug Administration to gain permission for a Phase 1 clinical trial under an Investigational New Drug (IND) application. Principal investigator, Corey Cutler, MD, a Dana-Farber transplant specialist, initiated the trial in 2009 at Dana-Farber and the Massachusetts General Hospital. The IND is sponsored by Fate Therapeutics, Inc. of San Diego.

Goessling and North were post-doctoral fellows in the laboratory of co-author Leonard Zon, MD, a stem cell researcher at CHB and a scientific founder of Fate Therapeutics, when they hit upon 16,16-dimethyl PGE2 while looking for compounds that could regulate the production of hematopoietic stem cells. The initial testing made use of zebra fish models. Goessling commented that "this is the first time a compound discovered in zebra fish has received a nod from the FDA for a clinical trial."

One of the limitations of cord blood as a transplant source is the cells engraft, or "take," in the recipient's bone marrow more slowly than matched donor cells form bone marrow. In addition, there is a higher failure rate for cord blood transplants. Thus there is a need for ways to improve the speed and quality of cord blood transplantation.

The research was supported by funding from the Harvard Stem Cell Institute, the National Institutes of Health, and the Howard Hughes Medical Institute.

The other authors are Michael Dovey, PhD, and James M. Harris, BIDMC; Xiao Guan, PhD, and Thorsten Schlaeger, PhD, CHB; Joseph Stegner and Myriam Armant, PhD, Center for Human Cell Therapy, Immune Disease Institute, Boston; Ping Jin, PhD, and David Stroncek, MD, National Institutes of Health, Bethesda, Md.; Naoya Uchida, MD, and John F. Tisdale, MD, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md.; Robyn S. Allen, Robert E. Donahue, VMD, Mark E. Metzger, and Aylin C. Bonifacino, National Heart, Lung, and Blood Institute, Bethesda, Md.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and consistently ranks among the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bill Schaller | EurekAlert!
Further information:
http://www.bidmc.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>