Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering team invents lab-on-a-chip for fast, inexpensive blood tests

10.01.2011
Next step will turn blood testing into a smartphone application

While most blood tests require shipping a vial of blood to a laboratory for analysis and waiting several days for the results, a new device invented by a team of engineers and students at the University of Rhode Island uses just a pinprick of blood in a portable device that provides results in less than 30 minutes.

"This development is a big step in point-of-care diagnostics, where testing can be performed in a clinic, in a doctor's office, or right at home," said Mohammad Faghri, URI professor of mechanical engineering and the lead researcher on the project. "No longer will patients have to wait anxiously for several days for their test results. They can have their blood tested when they walk into the doctor's office and the results will be ready before they leave."

With the new lab-on-a-chip technology, a drop of blood is placed on a plastic polymer cartridge smaller than a credit card and inserted into a shoebox-sized biosensor containing a miniature spectrometer and piezoelectric micro-pump. The blood travels through the cartridge in tiny channels 500 microns wide to a detection site where it reacts with preloaded reagents enabling the sensor to detect certain biomarkers of disease.

Several patents are pending on the invention.

Compared to similar devices in development elsewhere, the URI system is much smaller, more portable, requires a smaller blood sample, and is less expensive. While the sensor costs about $3,200, each test costs just $1.50, which is the cost for the plastic cartridge and reagents.

The first cartridges the researchers developed focus on the detection of C-reactive proteins (CRP) in the blood, a preferred method for helping doctors assess the risk of cardiovascular and peripheral vascular diseases. From 2002 to 2004 (the only years for which data are available), the number of CRP tests paid for by Medicare tripled from 145,000 to 454,000, and it is estimated that those numbers have quadrupled since then.

Faghri said that additional cartridges can be designed to detect biomarkers of other diseases. The researchers are already working to engineer the device to detect levels of the beta amyloid protein that can be used as a predictor of Alzheimer's disease. The device can also be engineered to detect virulent pathogens, including HIV, hepatitis B and H1N1 (swine) flu.

The next generation of the device will incorporate a hand-held sensor that will reduce manufacturing costs. Faghri also envisions a further miniaturization of the invention that can be adapted as a smartphone application. By embedding the biosensor in the cartridge and using the computer power of the phone, as well as its wireless communication capabilities, Faghri believes that patients may be able to conduct the tests themselves and have the results transmitted immediately to their doctor's office via their phone. Among many other benefits, this should help to significantly reduce health care costs.

"We are already making progress on many of the steps toward the next generation of the system, and it won't be long before we can begin to commercialize it," Faghri said.

In addition to Faghri, the research team includes URI Adjunct Professor Constantine Anagnostopoulos, Postdoctoral Associate Assem Abolmaaty, graduate students Peng Li, Kelly Cook, Jeremy Cogswell, John Jones, Michael Godfrin, Alex Pytka, Assad Akinfolarin, Hong Chen and Toru Yamada, and undergraduate students Admir Monteiro and Nick DiFillipo, as well as Research Associate Stefanie Demming from the Technical Institute of Braunschweig, Germany.

Primary funding for the project was provided by the National Science Foundation through its Partnership for International Research and Education Program.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>