Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could ending your fatty food habit cause withdrawal symptoms and depression?

12.12.2012
Bad food causes changes in brain chemicals before obesity hits

Even before obesity occurs, eating fatty and sugary foods causes chemical changes in the brain, meaning that going on a diet might feel similar to going through drug withdrawal, according to a study published today by Dr. Stephanie Fulton of the University of Montreal's Faculty of Medicine and its affiliated CRCHUM Hospital Research Centre.

"By working with mice, whose brains are in many ways comparable to our own, we discovered that the neurochemistry of the animals who had been fed a high fat, sugary diet were different from those who had been fed a healthy diet," Fulton explained. "The chemicals changed by the diet are associated with depression. A change of diet then causes withdrawal symptoms and a greater sensitivity to stressful situations, launching a vicious cycle of poor eating."

The research team feed one group of mice a low-fat diet and a high fat diet to a second group over six weeks, monitoring how the different food affected the way the animals behave. Fat represented 11% of the calories in the low-fat diet and 58% in the high-fat diet, causing the waist size in the latter group to increase by 11% – not yet obese. Next, Fulton and her colleagues use a variety of scientifically validated techniques to evaluate the relationship between rewarding mice with food and their resulting behaviour and emotions. They also actually looked at the brains of the mice to see how they had changed.

Mice that had been fed the higher-fat diet exhibited signs of being anxious, such as an avoidance of open areas. Moreover, their brains have been physically altered by their experiences. One of molecules in the brain that the researchers looked at is dopamine. It enables the brain to rewards us with good feelings, thereby encouraging us to learn certain kinds of behaviour. This chemical is the same in humans as it is in mice and other animals. In turn, CREB is a molecule that controls the activation of genes involved in the functioning of our brains, including those that cause the production of dopamine. It contributes to memory formation. "CREB is much more activated in the brains of higher-fat diet mice and these mice also have higher levels of corticosterone, a hormone that is associated with stress. This explains both the depression and the negative behaviour cycle," Fulton said. "It's interesting that these changes occur before obesity. These findings challenge our understanding of the relationship between diet, the body and the mind. It is food for thought about how we might support people psychologically as they strive to adopt healthy eating habits, regardless of their current corpulence."

About the study

The International Journal of Obesity issued the study via advanced online publication on December 11, 2012. The research was funded by the Natural Sciences and Engineering Research Council of Canada, the Canadian Diabetes Association and the Canada Foundation for Innovation. Fulton and her team are part of a research network that is working together to address the biological reasons for obesity and its related diseases, such as cardiovascular diseases, type 2 diabetes, some cancers, and of course depression. She is based at the Montreal Diabetes Centre, an institution associated with the CRCHUM and four Montreal universities that brings together facilities for clinical research, cell biology and microscopy research, and rodent physiology research

For further information:
William Raillant-Clark
International Press Attaché
Université de Montréal
Tel: 514-343-7593 | w.raillant-clark@umontreal.ca | @uMontreal_News

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>