Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elevated levels of sodium blunt response to stress, study shows

06.04.2011
All those salty snacks available at the local tavern might be doing more than increasing your thirst: They could also play a role in suppressing social anxiety.

New research from the University of Cincinnati (UC) shows that elevated levels of sodium blunt the body's natural responses to stress by inhibiting stress hormones that would otherwise be activated in stressful situations. These hormones are located along the hypothalamic-pituitary-adrenal (HPA) axis, which controls reactions to stress.

The research is reported in the April 6, 2011, issue of The Journal of Neuroscience, the official journal of the Society for Neuroscience.

"We're calling this the Watering Hole Effect," says Eric Krause, PhD, a research assistant professor in the basic science division of UC's department of psychiatry and behavioral neuroscience and first author of the study. "When you're thirsty, you have to overcome some amount of fear and anxiety to approach a communal water source. And you want to facilitate those interactions—that way everyone can get to the water source."

Krause and his team dehydrated laboratory rats by giving them sodium chloride, then exposed them to stress. Compared with a control group, the rats that received the sodium chloride secreted fewer stress hormones and also displayed a reduced cardiovascular response to stress.

"Their blood pressure and heart rate did not go up as much in response to stress as the control group's, and they returned to resting levels more quickly," says Krause.

"Also, in a social interaction paradigm with two rats interacting, we found them to be more interactive and less socially anxious."

Further research, through examination of brain and blood samples from the rats, showed that the same hormones that act on kidneys to compensate for dehydration also act on the brain to regulate responsiveness to stressors and social anxiety.

The elevated sodium level, known as hypernatremia, limited stress responses by suppressing the release of the pro-stress hormone angiotensin II. Conversely, it increased the activity of oxytocin, an anti-stress hormone.

Further research, Krause says, will examine these hormones and neurocircuits to investigate their role in social anxiety disorders and autism, a neurological disorder whose characteristics include social impairment.

"Oxytocin deficiency has been implicated in autism in previous studies," says Krause. "We'd like to investigate the possibility that dysregulation in fluid balance during pregnancy could result in autistic disorders."

Krause's team also included Annette de Kloet, Jonathan Flak, Michael Smeltzer, Matia Solomon, Nathan Evanson, Stephen Woods, Randall Sakai and James Herman.

The research was funded by grants from the National Institutes of Health and the American Heart Association. The authors declare no competing financial interests.

Keith Herrell | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>