Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elemental Mercury in Toronto, Ontario Could be Dangerous for Your Health

02.03.2011
Buildings are not only an intrinsic part of Toronto’s landscape, they are also adding mercury to the city’s air. As suggested by the findings of a Ryerson University study, it can lead to a negative long-term impact on our health.

“Indoor air has higher mercury concentration than outdoor air,” says chemistry and biology professor Julia Lu, supervisor of the research team and one of the authors of the study. “As a result, mercury has been reduced or removed from some products that are used indoors, but more steps need to be taken.”

Elemental mercury, a highly toxic substance found in such things as thermometers, batteries and fluorescent lights is liquid at room temperature. If it is not sealed in a container it can evaporate and be carried into the atmosphere. Eventually, it becomes oxidized mercury, which clings to surfaces in the environment. It will also change from inorganic forms to organic forms, which are much more toxic and will accumulate in the food chain.

To measure gaseous elemental mercury (GEM) in the atmosphere in Toronto, the researchers analyzed GEM concentrations at different times of day along major streets and highways, such as Queen Street, Eglinton Avenue, Highway 7 and Steeles Avenue. Twenty-seven underground and surface parking lots throughout the downtown core were also tested, as were five locations within and around Ryerson University’s Kerr Hall.

The researchers made several discoveries. First, they found that in Toronto, the higher the elevation, the higher the level of atmospheric GEM. Second, GEM levels are higher in underground parking lots than in surface lots. Third, GEM levels are higher indoors than outdoors. Fourth, GEM levels are higher in the outside air near building walls. Fifth, GEM levels at pedestrian levels during rush hour and non-rush hour were not statistically different from each other. The final finding, according to Lu, indicates that vehicles are not a major source of mercury to the urban atmosphere.

“There’s no need for alarm among pedestrians because street-level concentrations of elemental mercury aren’t high compared to rural areas. It won’t make you sick right away,” Lu says.

The real danger, she continues, is the future impact of mercury on the planet. Through a process combining long-range transport, chemical conversion, and bio-accumulation, mercury builds up in living organisms and ultimately affects every level of the food chain. This situation poses a serious threat to human and animal life, and the environment. A common example of bio-accumulation is the high levels of mercury in fish and shellfish. Consumption of such fish during pregnancy can pose significant health problems for babies.

More studies are needed to estimate the contribution of urban areas to atmospheric mercury, and the impact of indoor air on outdoor air quality and human health. In the meantime, though, Lu says it’s important to take some action now.

“Mercury can be discovered during building renovations. For example, it can be found in the floor tiles of an industrial building that used mercury or after a mercury spill in an old laboratory. It can be difficult to retrieve. So, our starting point is to get the source of the mercury under control and then reduce indoor levels of it.”

Lu and her team continue to research the presence and impact of elemental mercury, their next objective will be to pinpoint and quantify buildings that are sources of elemental mercury.

The paper’s lead authors are former Ryerson graduate student Elaine Cairns and undergraduate student Kavitharan Tharumakulasingam (a NSERC Undergraduate Student Research Awards recipient), both of whom were supervised by Lu. The research team also included Lu’s former graduate students Irene Cheng and Y. Huang, current graduate student Muhammad Yousaf, Dave Yap of the Ontario Ministry of the Environment and Makshoof Athar, a postdoctoral fellow from the University of the Punjab.

“Source, concentration, and distribution of elemental mercury in the atmosphere in Toronto, Canada” was published earlier this year in the online version of the journal Environmental Pollution. Research funding was provided by the Ontario Ministry of the Environment, the Natural Sciences and Engineering Research Council of Canada, and the Canada Foundation for Innovation. Support for Athar’s work was provided by the Higher Education Commission of Pakistan.

Ryerson University is Canada’s leader in innovative, career-oriented education and a university clearly on the move. With a mission to serve societal need, and a long-standing commitment to engaging its community, Ryerson offers more than 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to 28,000 students, including 2,000 master’s and PhD students, nearly 2,700 tenured and tenure-track faculty and staff, and more than 130,000 alumni worldwide. Research at Ryerson is on a trajectory of success and growth: externally funded research has doubled in the past four years. The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education. For more information, visit www.ryerson.ca

Johanna VanderMaas | Newswise Science News
Further information:
http://www.ryerson.ca

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>