Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Elemental Mercury in Toronto, Ontario Could be Dangerous for Your Health

Buildings are not only an intrinsic part of Toronto’s landscape, they are also adding mercury to the city’s air. As suggested by the findings of a Ryerson University study, it can lead to a negative long-term impact on our health.

“Indoor air has higher mercury concentration than outdoor air,” says chemistry and biology professor Julia Lu, supervisor of the research team and one of the authors of the study. “As a result, mercury has been reduced or removed from some products that are used indoors, but more steps need to be taken.”

Elemental mercury, a highly toxic substance found in such things as thermometers, batteries and fluorescent lights is liquid at room temperature. If it is not sealed in a container it can evaporate and be carried into the atmosphere. Eventually, it becomes oxidized mercury, which clings to surfaces in the environment. It will also change from inorganic forms to organic forms, which are much more toxic and will accumulate in the food chain.

To measure gaseous elemental mercury (GEM) in the atmosphere in Toronto, the researchers analyzed GEM concentrations at different times of day along major streets and highways, such as Queen Street, Eglinton Avenue, Highway 7 and Steeles Avenue. Twenty-seven underground and surface parking lots throughout the downtown core were also tested, as were five locations within and around Ryerson University’s Kerr Hall.

The researchers made several discoveries. First, they found that in Toronto, the higher the elevation, the higher the level of atmospheric GEM. Second, GEM levels are higher in underground parking lots than in surface lots. Third, GEM levels are higher indoors than outdoors. Fourth, GEM levels are higher in the outside air near building walls. Fifth, GEM levels at pedestrian levels during rush hour and non-rush hour were not statistically different from each other. The final finding, according to Lu, indicates that vehicles are not a major source of mercury to the urban atmosphere.

“There’s no need for alarm among pedestrians because street-level concentrations of elemental mercury aren’t high compared to rural areas. It won’t make you sick right away,” Lu says.

The real danger, she continues, is the future impact of mercury on the planet. Through a process combining long-range transport, chemical conversion, and bio-accumulation, mercury builds up in living organisms and ultimately affects every level of the food chain. This situation poses a serious threat to human and animal life, and the environment. A common example of bio-accumulation is the high levels of mercury in fish and shellfish. Consumption of such fish during pregnancy can pose significant health problems for babies.

More studies are needed to estimate the contribution of urban areas to atmospheric mercury, and the impact of indoor air on outdoor air quality and human health. In the meantime, though, Lu says it’s important to take some action now.

“Mercury can be discovered during building renovations. For example, it can be found in the floor tiles of an industrial building that used mercury or after a mercury spill in an old laboratory. It can be difficult to retrieve. So, our starting point is to get the source of the mercury under control and then reduce indoor levels of it.”

Lu and her team continue to research the presence and impact of elemental mercury, their next objective will be to pinpoint and quantify buildings that are sources of elemental mercury.

The paper’s lead authors are former Ryerson graduate student Elaine Cairns and undergraduate student Kavitharan Tharumakulasingam (a NSERC Undergraduate Student Research Awards recipient), both of whom were supervised by Lu. The research team also included Lu’s former graduate students Irene Cheng and Y. Huang, current graduate student Muhammad Yousaf, Dave Yap of the Ontario Ministry of the Environment and Makshoof Athar, a postdoctoral fellow from the University of the Punjab.

“Source, concentration, and distribution of elemental mercury in the atmosphere in Toronto, Canada” was published earlier this year in the online version of the journal Environmental Pollution. Research funding was provided by the Ontario Ministry of the Environment, the Natural Sciences and Engineering Research Council of Canada, and the Canada Foundation for Innovation. Support for Athar’s work was provided by the Higher Education Commission of Pakistan.

Ryerson University is Canada’s leader in innovative, career-oriented education and a university clearly on the move. With a mission to serve societal need, and a long-standing commitment to engaging its community, Ryerson offers more than 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to 28,000 students, including 2,000 master’s and PhD students, nearly 2,700 tenured and tenure-track faculty and staff, and more than 130,000 alumni worldwide. Research at Ryerson is on a trajectory of success and growth: externally funded research has doubled in the past four years. The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education. For more information, visit

Johanna VanderMaas | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>