Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using electrons to treat organic seeds

13.10.2008
Sales of organic products are booming: Consumers want their food to be untainted. To avoid the use of fungicides yet nevertheless protect plants from disease, researchers have developed a method that involves bombarding seeds with electrons to kill fungal spores and viruses.

Whereas a few years ago, organic products were sold exclusively by small health-food stores, they can now be found in the majority of supermarkets. A growing number of consumers prefer to buy organic food that has been grown without the use of chemical pesticides.

Conventional farming practice involves treating seeds with a mixture of chemicals: Fungicides to protect the emerging seedlings from attack by microscopic fungi, insecticides against wireworms, aphids and biting insects, herbicides to suppress weeds. Researchers at the Fraunhofer Institute for Electron Beam and Plasma Technology FEP in Dresden have developed an alternative to fungicide treatment.

“If cereal crops succumb to disease, this is usually due to microscopic fungi and spores present on the outer surface and in the husk of the seeds. Instead of using chemical products to eradicate these spores, we make use of accelerated electrons,” says FEP team leader Dr. Olaf Röder. So what happens when the electrons hit the seeds? “It’s not unlike cooking.

For instance, when you make strawberry jam, the germs are killed by the high temperature – and your jam will keep for years. The electrons destroy the chemical bonds that hold together the molecules in the fungal spores and other pathogens, but without generating heat. You might say that they cause the molecules to explode,” explains Röder.

The plant developed by the researchers exposes the seed to electrons as it falls through the treatment zone. It is capable of treating 30 metric tons of seeds per hour – or disinfecting the entire surface of around 200,000 individual seeds per second. But the greatest challenge is not the speed of the process: “Plant seeds are living organisms. If we damage the plant embryo, the seed will not germinate. We therefore have to dose the energy of the electrons very precisely, to ensure that they penetrate no further than the outer layers of the seed,” says Röder.

The researchers are disinfecting around 5,000 metric tons of seeds per year in collaboration with seed growers Schmidt-Seeger-GmbH. “Our method has been approved for use in conventional arable farming, and is even recommended for use in organic farming. We are planning to set up a spin-off company to take over and expand these production activities,” reports Röder.

At the Parts2Clean fair from October 28 to 30 in Stuttgart, the research team will be demonstrating numerous other disinfecting and sterilization technologies for the pharmaceutical and medical engineering industries, in addition to the e-ventus technology for seeds described above (Hall 7, Stand H 802 / I 903).

Dr. Olaf Röder | alfa
Further information:
http://www.fep.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/10/ResearchNews102008Topic3.jsp

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>