Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using electrons to treat organic seeds

13.10.2008
Sales of organic products are booming: Consumers want their food to be untainted. To avoid the use of fungicides yet nevertheless protect plants from disease, researchers have developed a method that involves bombarding seeds with electrons to kill fungal spores and viruses.

Whereas a few years ago, organic products were sold exclusively by small health-food stores, they can now be found in the majority of supermarkets. A growing number of consumers prefer to buy organic food that has been grown without the use of chemical pesticides.

Conventional farming practice involves treating seeds with a mixture of chemicals: Fungicides to protect the emerging seedlings from attack by microscopic fungi, insecticides against wireworms, aphids and biting insects, herbicides to suppress weeds. Researchers at the Fraunhofer Institute for Electron Beam and Plasma Technology FEP in Dresden have developed an alternative to fungicide treatment.

“If cereal crops succumb to disease, this is usually due to microscopic fungi and spores present on the outer surface and in the husk of the seeds. Instead of using chemical products to eradicate these spores, we make use of accelerated electrons,” says FEP team leader Dr. Olaf Röder. So what happens when the electrons hit the seeds? “It’s not unlike cooking.

For instance, when you make strawberry jam, the germs are killed by the high temperature – and your jam will keep for years. The electrons destroy the chemical bonds that hold together the molecules in the fungal spores and other pathogens, but without generating heat. You might say that they cause the molecules to explode,” explains Röder.

The plant developed by the researchers exposes the seed to electrons as it falls through the treatment zone. It is capable of treating 30 metric tons of seeds per hour – or disinfecting the entire surface of around 200,000 individual seeds per second. But the greatest challenge is not the speed of the process: “Plant seeds are living organisms. If we damage the plant embryo, the seed will not germinate. We therefore have to dose the energy of the electrons very precisely, to ensure that they penetrate no further than the outer layers of the seed,” says Röder.

The researchers are disinfecting around 5,000 metric tons of seeds per year in collaboration with seed growers Schmidt-Seeger-GmbH. “Our method has been approved for use in conventional arable farming, and is even recommended for use in organic farming. We are planning to set up a spin-off company to take over and expand these production activities,” reports Röder.

At the Parts2Clean fair from October 28 to 30 in Stuttgart, the research team will be demonstrating numerous other disinfecting and sterilization technologies for the pharmaceutical and medical engineering industries, in addition to the e-ventus technology for seeds described above (Hall 7, Stand H 802 / I 903).

Dr. Olaf Röder | alfa
Further information:
http://www.fep.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/10/ResearchNews102008Topic3.jsp

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>