Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electromagnetic pulses provide pain relief for osteoarthritis

Electromagnetic pulses significantly decrease pain and inflammation associated with osteoarthritis of the knee, according to Henry Ford Hospital researchers.

In the double-blind, randomized placebo-controlled study, 34 patients used a portable battery-operated device that emits a low-intensity pulsating electromagnetic frequency and experienced more than 40 percent pain relief on their first day.

"Our results show pulsed electromagnetic fields caused a significant decrease in pain" says Fred Nelson, M.D., associate program director for research and director of the Osteoarthritis Center, Department of Orthopaedics, Henry Ford Hospital.

Dr. Nelson will present the results this week at the Orthopaedic Research Society's annual meeting in New Orleans.

Dr. Nelson explains that in the laboratory, electromagnetic signals have been shown to decrease calcium in cartilage cells. This sets off a series of chemical events that can lead to reduced inflammation. Previously, the electromagnetic fields have been used to control pain related to cosmetic surgery.

"We are really fine-tuning what we are doing to the cell environment with a very specific pulse sequence and frequency," says Dr. Nelson.

Patients strapped the small, ring-shaped plastic device around their knees for 15 minutes, twice daily for six weeks. The device was lightweight and patients could position the device directly over clothing. All participants were given a device with a coil that appeared to work but some were assigned active coils and others were given non-active coils. The electromagnetic device was developed by Ivivi Health Sciences of Montvale, New Jersey.

Osteoarthritis of the knee is a leading cause of disability and loss of independence. It is a slow, progressively degenerative disease in which the joint cartilage gradually wears away due to trauma, aging or infection. As the cartilage thins, the surrounding bone thickens and often bones rub against one another, causing additional wear. Normal activity becomes painful and difficult.

Current treatments include drug therapies like anti-inflammatory medication or pain relievers; physical therapy; support devices; health and behavioral modifications such as weight loss; surgery and joint replacement.

Dr. Nelson explains that medications often have variable success and can produce considerable side effects such as changes in kidney and liver function, a reduction in the ability of blood to clot as well as abdominal pain, nausea and indigestion.

"The exciting thing about this new approach is that it has been found to have no side effects, it is relatively low-cost in the long-run and the onset of pain relief is immediate," says Dr. Nelson. "We look at electromagnetic pulses as a potential way to improve quality of life and independence for those who suffer from osteoarthritis of the knee."

Dr. Nelson says researchers will continue to look at the consistency of the relief, how long the pain relief lasts and if electromagnetic pulses might affect other joints.

Funding for the study: Ivivi Health Sciences.

Maria Seyrig | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>