Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein study reveals new approach for stopping herpes infections

26.03.2013
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a novel strategy for preventing infections due to the highly common herpes simplex viruses, the microbes responsible for causing genital herpes (herpes simplex virus 2) and cold sores (herpes simplex virus 1). The finding, published online by The FASEB Journal, could lead to new drugs for treating or suppressing herpes virus infections.
"We've essentially identified the molecular "key" that herpes viruses use to penetrate cell membranes and infect cells of the human body," said Betsy Herold, M.D., professor of pediatrics (infectious diseases), of microbiology & immunology and of obstetrics & gynecology and women's health at Einstein and attending physician of pediatrics, The Children's Hospital at Montefiore.

Herpes viruses are known to infect skin cells as well as cells lining the cervix and the genital tract. A 2006 JAMA study estimates that nearly 60 percent of U.S. men and women between the ages of 14 and 49 carry the HSV-1 virus. The CDC estimates that about 1 in 6 Americans (16.2 percent) between 14 and 49 are infected with herpes simplex virus type 2 (HSV-2), according to a 2010 national health survey. HSV-2 is a lifelong and incurable infection that can cause recurrent and painful genital sores and can make those infected with the virus two-to-three times more likely to acquire HIV, the virus that causes AIDS.

Dr. Herold and her colleagues had previously shown that infection by the herpes viruses depends on calcium released within the cells. In this study, they found that calcium release occurs because the viruses activate a critical cell-signaling molecule called Akt at the cell membrane.

As part of their investigation of Akt's role in herpes infections, the researchers took laboratory cultures of those human cell types and mixed them for 15 minutes with four different drugs known to inhibit Akt. The cells were then exposed for one hour to herpes simplex virus 2. All four drugs significantly inhibited herpes virus infection in each of the cell types. By contrast, cells not pretreated with the Akt inhibitors were readily infected on exposure to the virus.

"For people infected with herpes, the drug acyclovir helps prevent herpes outbreaks from recurring and lowers the risk of transmitting the infection to others," said Dr. Herold. "But some people have herpes infections that don't respond to acyclovir, and unfortunately there is no effective vaccine. So new approaches for suppressing and treating herpes infections are badly needed, and our findings indicate that inhibiting Akt should be a useful therapeutic strategy to pursue."

The paper "HSV activates Akt to trigger calcium release and promote viral entry: novel candidate target for treatment and suppression" was published online by The FASEB Journal. In addition to Dr. Herold, other authors of the paper (all of them at Einstein) were lead author Natalia Cheshenko, Ph.D., Janie B. Trepanier, Ph.D., Martha Stefanidou, Niall Buckley, Pablo Gonzalez and William Jacobs, Jr., Ph.D. The research was supported by grants from the National Institutes of Health (AI-061679) and the Center for AIDS Research at Einstein and Montefiore Medical Center (AI-51519).

Albert Einstein College of Medicine

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. In 2012, Einstein received over $160 million in awards from the NIH for major research centers at Einstein in diabetes, cancer, liver disease, and AIDS, as well as other areas. Through its affiliation with Montefiore Medical Center, the University Hospital for Einstein, and six other hospital systems, the College of Medicine runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit http://www.einstein.yu.edu and follow us on Twitter @EinsteinMed.

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>