Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein and Pitt researchers develop new TB test that will dramatically cut diagnosis time

23.03.2009
Research is part of Howard Hughes Medical Institute research initiative announced March 19 to fight TB and HIV in Africa

Researchers from the Albert Einstein College of Medicine and The University of Pittsburgh have developed an onsite method to quickly diagnose tuberculosis (TB) and expose the deadly drug-resistant strains that can mingle undetected with treatable TB strains. This study will be published in PLoS ONE, a peer-reviewed online journal from the Public Library of Science.

The researchers engineered bacteriophages, tiny viruses that attack bacteria, with a green fluorescence protein (GFP) implanted in their genome. Bacteriophages spread by injecting their DNA into bacterial cells. In this case, the GFP gene accompanies the DNA of the phage into the Mycobacterium tuberculosis cell, the bacterium that causes TB, causing the cell to glow. A clinician could detect the glow with equipment available at many clinics.

"The development of these reporter flurophages allows us to bypass the existing method of diagnosing TB, which requires cultivating slow-growing bacteria in a biosafety level 3 environment, a time-consuming and costly process," says William R. Jacobs, Jr., Ph.D., one of the authors of the study. "By infecting live M. tuberculosis cells with a flurophage, a quick and highly sensitive visual reading can be done. We are optimistic that we can move the diagnostic process from several weeks to several days or even hours, which could have a significant impact on treatment."

"A report from South Africa showed that the extensively drug-resistant TB strains can kill within 16 days, on average," says Graham Hatfull, Ph.D., the lead author and close collaborator of Dr. Jacobs. "In rural Africa, it takes too long to collect samples, send them off, do the test, and have the data sent back. Clinicians need rapid, relatively cheap, and simple methods for detecting TB and drug-resistant strains in the local clinic. This test provides a quick diagnosis so the patient can be isolated and treated."

Besides quick diagnosis, the test also could be used to distinguish treatable TB strains from those that are drug resistant (DR-TB) and extensively drug resistant (XDR-TB), which normally takes months. Researchers treated M. tuberculosis with antibiotics at the same time the bacteriophages were introduced; the TB strains that were sensitive to antibiotics died, but the drug-resistant cells survived and continued to glow.

The study, "Fluoromycobacteriophages for Rapid, Specific, and Sensitive Antibiotic Susceptibility Testing of Mycobacterium tuberculosis," will appear in the March 19, 2009 edition of PLoS ONE.

The group's research was funded as part of a major new research initiative from Howard Hughes Medical Institute (HHMI). HHMI announced on March 19 that it will partner with University of KwaZulu-Natal in South Africa to establish an international research center focused on the TB and HIV coepidemics, called KwaZulu-Natal Research Institute for TB-HIV (K-RITH). Dr. Jacobs will direct research into developing rapid and effective TB tests, one of the new institute's primary objectives. His work with Hatfull and postdoctoral fellow Mariana Piuri on the flurophage study was related to that effort.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>