Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein and Pitt researchers develop new TB test that will dramatically cut diagnosis time

23.03.2009
Research is part of Howard Hughes Medical Institute research initiative announced March 19 to fight TB and HIV in Africa

Researchers from the Albert Einstein College of Medicine and The University of Pittsburgh have developed an onsite method to quickly diagnose tuberculosis (TB) and expose the deadly drug-resistant strains that can mingle undetected with treatable TB strains. This study will be published in PLoS ONE, a peer-reviewed online journal from the Public Library of Science.

The researchers engineered bacteriophages, tiny viruses that attack bacteria, with a green fluorescence protein (GFP) implanted in their genome. Bacteriophages spread by injecting their DNA into bacterial cells. In this case, the GFP gene accompanies the DNA of the phage into the Mycobacterium tuberculosis cell, the bacterium that causes TB, causing the cell to glow. A clinician could detect the glow with equipment available at many clinics.

"The development of these reporter flurophages allows us to bypass the existing method of diagnosing TB, which requires cultivating slow-growing bacteria in a biosafety level 3 environment, a time-consuming and costly process," says William R. Jacobs, Jr., Ph.D., one of the authors of the study. "By infecting live M. tuberculosis cells with a flurophage, a quick and highly sensitive visual reading can be done. We are optimistic that we can move the diagnostic process from several weeks to several days or even hours, which could have a significant impact on treatment."

"A report from South Africa showed that the extensively drug-resistant TB strains can kill within 16 days, on average," says Graham Hatfull, Ph.D., the lead author and close collaborator of Dr. Jacobs. "In rural Africa, it takes too long to collect samples, send them off, do the test, and have the data sent back. Clinicians need rapid, relatively cheap, and simple methods for detecting TB and drug-resistant strains in the local clinic. This test provides a quick diagnosis so the patient can be isolated and treated."

Besides quick diagnosis, the test also could be used to distinguish treatable TB strains from those that are drug resistant (DR-TB) and extensively drug resistant (XDR-TB), which normally takes months. Researchers treated M. tuberculosis with antibiotics at the same time the bacteriophages were introduced; the TB strains that were sensitive to antibiotics died, but the drug-resistant cells survived and continued to glow.

The study, "Fluoromycobacteriophages for Rapid, Specific, and Sensitive Antibiotic Susceptibility Testing of Mycobacterium tuberculosis," will appear in the March 19, 2009 edition of PLoS ONE.

The group's research was funded as part of a major new research initiative from Howard Hughes Medical Institute (HHMI). HHMI announced on March 19 that it will partner with University of KwaZulu-Natal in South Africa to establish an international research center focused on the TB and HIV coepidemics, called KwaZulu-Natal Research Institute for TB-HIV (K-RITH). Dr. Jacobs will direct research into developing rapid and effective TB tests, one of the new institute's primary objectives. His work with Hatfull and postdoctoral fellow Mariana Piuri on the flurophage study was related to that effort.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>