Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein and Pitt researchers develop new TB test that will dramatically cut diagnosis time

23.03.2009
Research is part of Howard Hughes Medical Institute research initiative announced March 19 to fight TB and HIV in Africa

Researchers from the Albert Einstein College of Medicine and The University of Pittsburgh have developed an onsite method to quickly diagnose tuberculosis (TB) and expose the deadly drug-resistant strains that can mingle undetected with treatable TB strains. This study will be published in PLoS ONE, a peer-reviewed online journal from the Public Library of Science.

The researchers engineered bacteriophages, tiny viruses that attack bacteria, with a green fluorescence protein (GFP) implanted in their genome. Bacteriophages spread by injecting their DNA into bacterial cells. In this case, the GFP gene accompanies the DNA of the phage into the Mycobacterium tuberculosis cell, the bacterium that causes TB, causing the cell to glow. A clinician could detect the glow with equipment available at many clinics.

"The development of these reporter flurophages allows us to bypass the existing method of diagnosing TB, which requires cultivating slow-growing bacteria in a biosafety level 3 environment, a time-consuming and costly process," says William R. Jacobs, Jr., Ph.D., one of the authors of the study. "By infecting live M. tuberculosis cells with a flurophage, a quick and highly sensitive visual reading can be done. We are optimistic that we can move the diagnostic process from several weeks to several days or even hours, which could have a significant impact on treatment."

"A report from South Africa showed that the extensively drug-resistant TB strains can kill within 16 days, on average," says Graham Hatfull, Ph.D., the lead author and close collaborator of Dr. Jacobs. "In rural Africa, it takes too long to collect samples, send them off, do the test, and have the data sent back. Clinicians need rapid, relatively cheap, and simple methods for detecting TB and drug-resistant strains in the local clinic. This test provides a quick diagnosis so the patient can be isolated and treated."

Besides quick diagnosis, the test also could be used to distinguish treatable TB strains from those that are drug resistant (DR-TB) and extensively drug resistant (XDR-TB), which normally takes months. Researchers treated M. tuberculosis with antibiotics at the same time the bacteriophages were introduced; the TB strains that were sensitive to antibiotics died, but the drug-resistant cells survived and continued to glow.

The study, "Fluoromycobacteriophages for Rapid, Specific, and Sensitive Antibiotic Susceptibility Testing of Mycobacterium tuberculosis," will appear in the March 19, 2009 edition of PLoS ONE.

The group's research was funded as part of a major new research initiative from Howard Hughes Medical Institute (HHMI). HHMI announced on March 19 that it will partner with University of KwaZulu-Natal in South Africa to establish an international research center focused on the TB and HIV coepidemics, called KwaZulu-Natal Research Institute for TB-HIV (K-RITH). Dr. Jacobs will direct research into developing rapid and effective TB tests, one of the new institute's primary objectives. His work with Hatfull and postdoctoral fellow Mariana Piuri on the flurophage study was related to that effort.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>