Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective methods for detecting early signs of tremor

04.10.2010
Sensitive new quantitive methods could be used to detect small signs of increased tremor and impaired motor skills caused by exposure to certain metals, and to follow up the treatment of neurological disorders, reveals a thesis from the University of Gothenburg, Sweden.

“The aim was to investigate whether quantitative measurement methods, in other words sensitive computer-based methods, could be used to detect small changes in tremor or other motor functions resulting from exposure to low levels of neurotoxic metals,” says Gunilla Wastensson, doctoral student at the Sahlgrenska Academy’s Occupational and Environmental Medicine Unit.

The thesis looked at former welders from the Gothenburg shipyards, who had been exposed to manganese from welding fumes. When tested for fine motor skills – in other words manual dexterity and motor speed – the welders came out worse than other shipyard workers.

“We interpret this as a residual effect of manganese exposure from the welding fumes, even though they’d stopped welding 18 years ago on average,” says Wastensson.

A second study looked into whether quantitative measurement methods can be used to follow up the treatment of certain neurological disorders, such as essential tremor, which is a common neurological complaint where individuals are affected by involuntary shaking of the hands.

“Some essential tremor patients have such shaky hands that they find it hard to manage day-to-day activities,” says Wastensson. “Such cases can be treated with a neurosurgical intervention known as deep brain stimulation.”

For optimum effect, the stimulator must be programmed, which takes time and requires specially trained staff. Essential tremor patients treated with deep brain stimulation were both examined by an experienced neurologist who estimated the degree of tremor on a scale of 0 to 4, and assessed using quantitative measurement methods. The effect of the stimulation was very prominent, and the quantitative measurement methods were slightly more sensitive at detecting changes, particularly where the tremor was less pronounced.

“The results show that quantitative measurement methods are more sensitive than clinical assessments, and that they can be used to detect small changes in tremor or other motor functions caused by neurotoxic metals,” says Wastensson.

She also believes that quantitative measurement methods could be used to complement clinical assessments when determining the impact of treatments for various neurological disorders.

METAL POISONING
It has long been known that metals such as mercury and manganese can damage the nervous system. Descriptions of the typical symptoms of mercury poisoning can be found as far back as the 16th century for hatters in the UK who used mercury nitrate in the production of felt hats – hence the term “mad hatters”. Inhalation of high doses of manganese for extended periods,

in connection with welding for example, can cause a clinical picture that resembles Parkinson’s disease, “manganism”. Improvements in working conditions have resulted in lower quantities of these substances in the workplace.

For more information, please contact:
Gunilla Wastensson, PhD student at the Sahlgrenska Academy,
tel. +46 31 786 28 94
+46 31 786 28 94
e-mail gunilla.wastensson@amm.gu.se
Doctoral thesis for the degree of PhD (Medicine) at the Occupational and Environmental Medicine Unit, Department of Internal Medicine, Sahlgrenska Academy.

Title of thesis: Quantitative methods for evaluation of tremor and neuromotor function: application in workers exposed to neurotoxic metals and patients with essential tremor.

Download the thesis from: http://hdl.handle.net/2077/23133
The thesis has been successfully defended.

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/23133

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>