Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective Gene Therapy for Children with Wiskott-Aldrich-Syndrome

11.11.2010
A Severe Inborn Immunodeficiency Disease: In a first application of gene therapy for the treatment of Wiskott-Aldrich Syndrome, blood forming bone marrow cells have been corrected by gene transfer in Hannover, Germany.

In a first application of gene therapy for the treatment of Wiskott-Aldrich Syndrome, blood forming bone marrow cells have been corrected by gene transfer in Hannover, Germany.

A team led by Professor Christoph Klein has succeeded in correcting symptoms of this rare, inherited immunodeficiency in 9 out of 10 children in a clinical trial. One patient did not receive a sufficient number of cells, and one patient unfortunately developed an acute T cell leukemia related to the treatment. In an article published in the New England Journal of Medicine this week, Klein and colleagues report on details of their trial’s two first patients with four years of follow-up. “We are delighted about the possibility to offer a new form of therapy to this group of patients” says Klein. “However, we have to proceed very carefully, because the inherent risks of the retrovirus vector technology can produce serious side effects, as occurred in one of our patients.” Earlier this year, Professor Klein received the renowned Leibniz Award of the German Research Foundation (DFG) for his work in pediatric immunology.

The Wiskott-Aldrich Syndrome
The first symptoms of Wiskott-Aldrich syndrome (WAS) occur in early childhood and include repeated serious infections, pneumonia, bleeding and rashes. WAS patients frequently develop autoimmune diseases, leukemia or lymphoma, and die of infectious complications when left untreated. Allogeneic blood stem cell (bone marrow) transplantation has been the only therapeutic option thus far. However, this approach requires a genetically matched donor and therefore, has not been available for all patients, and can produce serious side immunological side effects. “Immune complications of allogeneic stem cell transplantation can be quite severe in WAS patients” notes Dr. Kaan Boztug, a researcher in Christoph Klein’s team and first author of the New England Journal of Medicine article. The disease is caused by a genetic mutation disturbing the formation of the Wiskott-Aldrich Syndrome protein (WASP). The protein is important for a functional cytoskeleton, which is required for maturation and activation of white blood cells forming the immune system and platelets required for blood clotting. The researchers could demonstrate by several tests that gene transfer can restore cytoskeletal function.
Treatment by transfer of a normal gene
The Wiskott-Aldrich Syndrome (WAS) gene is located on the X chromosome, and therefore the disease is exclusively found in boys, such as the five-year old Felix Ott. Shortly after being born in 2005, he had to be admitted to the intensive care unit because of severe bleeding. The diagnosis Wiskott-Aldrich Syndrome was made later, at age three. At this point, Felix’s pediatrician anticipated a bad prognosis. In 2009, Felix received stem cell gene therapy. The researchers purified hematopoietic stem cells and corrected the genetic defect by introducing a healthy copy of the WAS gene using a retroviral vector. The genetically modified cells were reinfused and started to produce normal blood cells. Within a year after gene therapy, Felix´s corrected bone marrow generated functional platelets and white blood cells. The symptoms caused by dysfunctional blood cells completely resolved. He now enjoys a normal life and his father Oliver is quite joyful: “Today, Felix can play with other children and we don’t have to handle him with kid gloves any more”.
Possibilities and risks of gene therapy
For gene therapy, missing genetic information is transferred into body cells to reconstitute the diseased cells’ ability to produce a vital protein from the transferred code. Nature itself provides very efficient gene ferries in the form of viruses. For gene therapy, the genetic information for making viral proteins is removed, and replaced by the healthy WAS gene. Ideally, a single application is sufficient for replacing gene function, and might avoid the necessity for lifelong medication.
Even though gene therapy is a simple concept, in clinical reality it requires a complex medical treatment and is associated not only with great potential but also with significant risks. Patient safety is a top priority in the pursuit of possibilities to cure rare diseases. Unwanted side effects of gene vector integration into the genome of cells include the activation of cellular genes involved in initiating cancer. Tight monitoring of bone marrow function for side effects is of great importance for the successful conduct of gene therapy trials. Prof. Christof von Kalle at the National Center for Tumor Diseases (NCT) in Heidelberg, Germany is an internationally renowned expert in gene therapy vector monitoring. His team regularly studies the treated WAS patients’ cells for activation of cancer associated genes. “While we did not discover very large imbalances of cell growth in the first patients, this does not yet exclude more serious side effects developing later.” First studies in cells from the leukemic patient seem to indicate that the therapeutic vectors have caused the initial stages of this severe side effect, which also occurred in previous gene therapy trials in Paris and London.
“New gene vectors can potentially prevent such side effects, but have not been available in a clinically usable format,” says Klein. “We do hope that this technology will be available one year from now for the next generation of this trial.”

Prior to clinical application of this gene therapy Klein’s interdisciplinary team has closely worked with philosophers and bioethicists. “For our WAS children without suitable transplant donors, gene therapy offers a chance to return to a normal life, as Felix’s example shows,” explains Klein.

Care for Rare Foundation
Professor Christoph Klein and colleagues have established the Care-for-Rare-Foundation aiming to help children with rare diseases by promoting translational scientific studies and by enabling rapid access to state-of-the-art genetic diagnosis and innovative therapies. The Care-for-Rare Foundation collaborates with an international network of physicians and scientists and has a current focus on rare diseases of the immune system (www.care-for-rare.org).

Further information: Professor Christoph Klein, klein.christoph@mh-hannover.de, phone +49 511 532-6711

Stefan Zorn | idw
Further information:
http://www.care-for-rare.org
http://www.mh-hannover.de/

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>