Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective Gene Therapy for Children with Wiskott-Aldrich-Syndrome

11.11.2010
A Severe Inborn Immunodeficiency Disease: In a first application of gene therapy for the treatment of Wiskott-Aldrich Syndrome, blood forming bone marrow cells have been corrected by gene transfer in Hannover, Germany.

In a first application of gene therapy for the treatment of Wiskott-Aldrich Syndrome, blood forming bone marrow cells have been corrected by gene transfer in Hannover, Germany.

A team led by Professor Christoph Klein has succeeded in correcting symptoms of this rare, inherited immunodeficiency in 9 out of 10 children in a clinical trial. One patient did not receive a sufficient number of cells, and one patient unfortunately developed an acute T cell leukemia related to the treatment. In an article published in the New England Journal of Medicine this week, Klein and colleagues report on details of their trial’s two first patients with four years of follow-up. “We are delighted about the possibility to offer a new form of therapy to this group of patients” says Klein. “However, we have to proceed very carefully, because the inherent risks of the retrovirus vector technology can produce serious side effects, as occurred in one of our patients.” Earlier this year, Professor Klein received the renowned Leibniz Award of the German Research Foundation (DFG) for his work in pediatric immunology.

The Wiskott-Aldrich Syndrome
The first symptoms of Wiskott-Aldrich syndrome (WAS) occur in early childhood and include repeated serious infections, pneumonia, bleeding and rashes. WAS patients frequently develop autoimmune diseases, leukemia or lymphoma, and die of infectious complications when left untreated. Allogeneic blood stem cell (bone marrow) transplantation has been the only therapeutic option thus far. However, this approach requires a genetically matched donor and therefore, has not been available for all patients, and can produce serious side immunological side effects. “Immune complications of allogeneic stem cell transplantation can be quite severe in WAS patients” notes Dr. Kaan Boztug, a researcher in Christoph Klein’s team and first author of the New England Journal of Medicine article. The disease is caused by a genetic mutation disturbing the formation of the Wiskott-Aldrich Syndrome protein (WASP). The protein is important for a functional cytoskeleton, which is required for maturation and activation of white blood cells forming the immune system and platelets required for blood clotting. The researchers could demonstrate by several tests that gene transfer can restore cytoskeletal function.
Treatment by transfer of a normal gene
The Wiskott-Aldrich Syndrome (WAS) gene is located on the X chromosome, and therefore the disease is exclusively found in boys, such as the five-year old Felix Ott. Shortly after being born in 2005, he had to be admitted to the intensive care unit because of severe bleeding. The diagnosis Wiskott-Aldrich Syndrome was made later, at age three. At this point, Felix’s pediatrician anticipated a bad prognosis. In 2009, Felix received stem cell gene therapy. The researchers purified hematopoietic stem cells and corrected the genetic defect by introducing a healthy copy of the WAS gene using a retroviral vector. The genetically modified cells were reinfused and started to produce normal blood cells. Within a year after gene therapy, Felix´s corrected bone marrow generated functional platelets and white blood cells. The symptoms caused by dysfunctional blood cells completely resolved. He now enjoys a normal life and his father Oliver is quite joyful: “Today, Felix can play with other children and we don’t have to handle him with kid gloves any more”.
Possibilities and risks of gene therapy
For gene therapy, missing genetic information is transferred into body cells to reconstitute the diseased cells’ ability to produce a vital protein from the transferred code. Nature itself provides very efficient gene ferries in the form of viruses. For gene therapy, the genetic information for making viral proteins is removed, and replaced by the healthy WAS gene. Ideally, a single application is sufficient for replacing gene function, and might avoid the necessity for lifelong medication.
Even though gene therapy is a simple concept, in clinical reality it requires a complex medical treatment and is associated not only with great potential but also with significant risks. Patient safety is a top priority in the pursuit of possibilities to cure rare diseases. Unwanted side effects of gene vector integration into the genome of cells include the activation of cellular genes involved in initiating cancer. Tight monitoring of bone marrow function for side effects is of great importance for the successful conduct of gene therapy trials. Prof. Christof von Kalle at the National Center for Tumor Diseases (NCT) in Heidelberg, Germany is an internationally renowned expert in gene therapy vector monitoring. His team regularly studies the treated WAS patients’ cells for activation of cancer associated genes. “While we did not discover very large imbalances of cell growth in the first patients, this does not yet exclude more serious side effects developing later.” First studies in cells from the leukemic patient seem to indicate that the therapeutic vectors have caused the initial stages of this severe side effect, which also occurred in previous gene therapy trials in Paris and London.
“New gene vectors can potentially prevent such side effects, but have not been available in a clinically usable format,” says Klein. “We do hope that this technology will be available one year from now for the next generation of this trial.”

Prior to clinical application of this gene therapy Klein’s interdisciplinary team has closely worked with philosophers and bioethicists. “For our WAS children without suitable transplant donors, gene therapy offers a chance to return to a normal life, as Felix’s example shows,” explains Klein.

Care for Rare Foundation
Professor Christoph Klein and colleagues have established the Care-for-Rare-Foundation aiming to help children with rare diseases by promoting translational scientific studies and by enabling rapid access to state-of-the-art genetic diagnosis and innovative therapies. The Care-for-Rare Foundation collaborates with an international network of physicians and scientists and has a current focus on rare diseases of the immune system (www.care-for-rare.org).

Further information: Professor Christoph Klein, klein.christoph@mh-hannover.de, phone +49 511 532-6711

Stefan Zorn | idw
Further information:
http://www.care-for-rare.org
http://www.mh-hannover.de/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>