Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective Gene Therapy for Children with Wiskott-Aldrich-Syndrome

11.11.2010
A Severe Inborn Immunodeficiency Disease: In a first application of gene therapy for the treatment of Wiskott-Aldrich Syndrome, blood forming bone marrow cells have been corrected by gene transfer in Hannover, Germany.

In a first application of gene therapy for the treatment of Wiskott-Aldrich Syndrome, blood forming bone marrow cells have been corrected by gene transfer in Hannover, Germany.

A team led by Professor Christoph Klein has succeeded in correcting symptoms of this rare, inherited immunodeficiency in 9 out of 10 children in a clinical trial. One patient did not receive a sufficient number of cells, and one patient unfortunately developed an acute T cell leukemia related to the treatment. In an article published in the New England Journal of Medicine this week, Klein and colleagues report on details of their trial’s two first patients with four years of follow-up. “We are delighted about the possibility to offer a new form of therapy to this group of patients” says Klein. “However, we have to proceed very carefully, because the inherent risks of the retrovirus vector technology can produce serious side effects, as occurred in one of our patients.” Earlier this year, Professor Klein received the renowned Leibniz Award of the German Research Foundation (DFG) for his work in pediatric immunology.

The Wiskott-Aldrich Syndrome
The first symptoms of Wiskott-Aldrich syndrome (WAS) occur in early childhood and include repeated serious infections, pneumonia, bleeding and rashes. WAS patients frequently develop autoimmune diseases, leukemia or lymphoma, and die of infectious complications when left untreated. Allogeneic blood stem cell (bone marrow) transplantation has been the only therapeutic option thus far. However, this approach requires a genetically matched donor and therefore, has not been available for all patients, and can produce serious side immunological side effects. “Immune complications of allogeneic stem cell transplantation can be quite severe in WAS patients” notes Dr. Kaan Boztug, a researcher in Christoph Klein’s team and first author of the New England Journal of Medicine article. The disease is caused by a genetic mutation disturbing the formation of the Wiskott-Aldrich Syndrome protein (WASP). The protein is important for a functional cytoskeleton, which is required for maturation and activation of white blood cells forming the immune system and platelets required for blood clotting. The researchers could demonstrate by several tests that gene transfer can restore cytoskeletal function.
Treatment by transfer of a normal gene
The Wiskott-Aldrich Syndrome (WAS) gene is located on the X chromosome, and therefore the disease is exclusively found in boys, such as the five-year old Felix Ott. Shortly after being born in 2005, he had to be admitted to the intensive care unit because of severe bleeding. The diagnosis Wiskott-Aldrich Syndrome was made later, at age three. At this point, Felix’s pediatrician anticipated a bad prognosis. In 2009, Felix received stem cell gene therapy. The researchers purified hematopoietic stem cells and corrected the genetic defect by introducing a healthy copy of the WAS gene using a retroviral vector. The genetically modified cells were reinfused and started to produce normal blood cells. Within a year after gene therapy, Felix´s corrected bone marrow generated functional platelets and white blood cells. The symptoms caused by dysfunctional blood cells completely resolved. He now enjoys a normal life and his father Oliver is quite joyful: “Today, Felix can play with other children and we don’t have to handle him with kid gloves any more”.
Possibilities and risks of gene therapy
For gene therapy, missing genetic information is transferred into body cells to reconstitute the diseased cells’ ability to produce a vital protein from the transferred code. Nature itself provides very efficient gene ferries in the form of viruses. For gene therapy, the genetic information for making viral proteins is removed, and replaced by the healthy WAS gene. Ideally, a single application is sufficient for replacing gene function, and might avoid the necessity for lifelong medication.
Even though gene therapy is a simple concept, in clinical reality it requires a complex medical treatment and is associated not only with great potential but also with significant risks. Patient safety is a top priority in the pursuit of possibilities to cure rare diseases. Unwanted side effects of gene vector integration into the genome of cells include the activation of cellular genes involved in initiating cancer. Tight monitoring of bone marrow function for side effects is of great importance for the successful conduct of gene therapy trials. Prof. Christof von Kalle at the National Center for Tumor Diseases (NCT) in Heidelberg, Germany is an internationally renowned expert in gene therapy vector monitoring. His team regularly studies the treated WAS patients’ cells for activation of cancer associated genes. “While we did not discover very large imbalances of cell growth in the first patients, this does not yet exclude more serious side effects developing later.” First studies in cells from the leukemic patient seem to indicate that the therapeutic vectors have caused the initial stages of this severe side effect, which also occurred in previous gene therapy trials in Paris and London.
“New gene vectors can potentially prevent such side effects, but have not been available in a clinically usable format,” says Klein. “We do hope that this technology will be available one year from now for the next generation of this trial.”

Prior to clinical application of this gene therapy Klein’s interdisciplinary team has closely worked with philosophers and bioethicists. “For our WAS children without suitable transplant donors, gene therapy offers a chance to return to a normal life, as Felix’s example shows,” explains Klein.

Care for Rare Foundation
Professor Christoph Klein and colleagues have established the Care-for-Rare-Foundation aiming to help children with rare diseases by promoting translational scientific studies and by enabling rapid access to state-of-the-art genetic diagnosis and innovative therapies. The Care-for-Rare Foundation collaborates with an international network of physicians and scientists and has a current focus on rare diseases of the immune system (www.care-for-rare.org).

Further information: Professor Christoph Klein, klein.christoph@mh-hannover.de, phone +49 511 532-6711

Stefan Zorn | idw
Further information:
http://www.care-for-rare.org
http://www.mh-hannover.de/

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

Researchers identify cause of hereditary skeletal muscle disorder

22.02.2017 | Health and Medicine

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>